• Title/Summary/Keyword: Grassmannians

Search Result 26, Processing Time 0.02 seconds

GALKIN'S LOWER BOUND CONJECURE FOR LAGRANGIAN AND ORTHOGONAL GRASSMANNIANS

  • Cheong, Daewoong;Han, Manwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.933-943
    • /
    • 2020
  • Let M be a Fano manifold, and H🟉(M; ℂ) be the quantum cohomology ring of M with the quantum product 🟉. For 𝜎 ∈ H🟉(M; ℂ), denote by [𝜎] the quantum multiplication operator 𝜎🟉 on H🟉(M; ℂ). It was conjectured several years ago [7,8] and has been proved for many Fano manifolds [1,2,10,14], including our cases, that the operator [c1(M)] has a real valued eigenvalue 𝛿0 which is maximal among eigenvalues of [c1(M)]. Galkin's lower bound conjecture [6] states that for a Fano manifold M, 𝛿0 ≥ dim M + 1, and the equality holds if and only if M is the projective space ℙn. In this note, we show that Galkin's lower bound conjecture holds for Lagrangian and orthogonal Grassmannians, modulo some exceptions for the equality.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

A BIJECTIVE PROOF OF r = 1 REDUCTION FORMULA FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

  • Moon, Dong-Ho
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.271-281
    • /
    • 2010
  • Inspired by the reduction formulae between intersection numbers on Grassmannians obtained by Griffiths-Harris and the factorization theorem of Littlewood-Richardson coefficients by King, Tollu and Toumazet, eight reduction formulae has been discovered by the author and others. In this paper, we prove r = 1 reduction formula by constructing a bijective map between suitable sets of Littlewood-Richardson tableaux.

REAL HYPERSURFACES OF TYPE A IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE NORMAL JACOBI OPERATOR

  • Jeong, Im-Soon;Suh, Young-Jin;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.423-434
    • /
    • 2012
  • In this paper we give a characterization of real hypersurfaces of type (A) in a complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ which is a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, in terms of two commuting conditions related to the normal Jacobi operator and the shape operator.

A BIJECTIVE PROOF OF THE SECOND REDUCTION FORMULA FOR LITTLEWOOD-RICHARDSON COEFFICIENTS

  • Cho, Soo-Jin;Jung, Eun-Kyoung;Moon, Dong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.485-494
    • /
    • 2008
  • There are two well known reduction formulae for structural constants of the cohomology ring of Grassmannians, i.e., Littlewood-Richardson coefficients. Two reduction formulae are a conjugate pair in the sense that indexing partitions of one formula are conjugate to those of the other formula. A nice bijective proof of the first reduction formula is given in the authors' previous paper while a (combinatorial) proof for the second reduction formula in the paper depends on the identity between Littlewood-Richardson coefficients of conjugate shape. In this article, a direct bijective proof for the second reduction formula for Littlewood-Richardson coefficients is given. Our proof is independent of any previously known results (or bijections) on tableaux theory and supplements the arguments on bijective proofs of reduction formulae in the authors' previous paper.