• 제목/요약/키워드: Graphite particles

검색결과 144건 처리시간 0.027초

Synthesis and Characterization of Mn3O4-Graphene Nanocomposite thin Film by an ex situ Approach

  • Kang, Myunggoo;Kim, Jung Hun;Yang, Woochul;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1067-1072
    • /
    • 2014
  • In this study, we report a new approach for $Mn_3O_4$-graphene nanocomposite by ex situ method. This nanocomposite shows two-dimensional aggregation of nanoparticle, and doping effect by decorated manganese oxide ($Mn_3O_4$), as well. The graphene film was made through micromechanical cleavage of graphite on the $SiO_2/Si$ wafer. Manganese oxide ($Mn_3O_4$) nanoparticle with uniform cubic shape and size (about $5.47{\pm}0.61$ nm sized) was synthesized through the thermal decomposition of manganese(II) acetate, in the presence of oleic acid and oleylamine. The nanocomposite was obtained by self-assembly of nanoparticles on graphene film, using hydrophobic interaction. After heat treatment, the decorated nanoparticles have island structure, with one-layer thickness by two-dimensional aggregations of particles, to minimize the surface potential of each particle. The doping effect of $Mn_3O_4$ nanoparticle was investigated with Raman spectra. Given the upshift in positions of G and 2D in raman peaks, we suggest that $Mn_3O_4$ nanoparticles induce p-doping of graphene film.

플라즈마 화학 기상 증착법에서 DC bias가 인가된 탄소나노튜브의 수직성장과 전계방출 특성 (The Vertical Growth of CNTs by DC Bias-Assisted PECVD and Their Field Emission Properties.)

  • 정성회;김광식;장건익;류호진
    • 한국전기전자재료학회논문지
    • /
    • 제15권4호
    • /
    • pp.367-372
    • /
    • 2002
  • The vertically well-aligned carbon nanotubes(CNTs) were successfully grown on Ni coated silicon wafer substrate by DC bias-assisted PECVD(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15~30nm was prepared by electron beam evaporator method. In order to find the optimum growth condition, the type of gas mixture such as $C_2H_2-NH_3$ was systematically investigated by adjusting the gas mixing ratio at $570^{\circ}C$ under 0.4Torr. The diameter of the grown CNTs was 40~200nm and the diameter of the CNTs increased with increasing the Ni particles size. TEM images clearly showed carbon nanotubes to be multiwalled. The measured turn-on field was $3.9V/\mu\textrm{m}$ and an emission current of $1.4{\times}10^4A/\textrm{cm}^2$ was $7V/\mu\textrm{m}$. The CNTs grown by bias-assisted PECVD was able to demonstrate high quality in terms of vertical alignment, crystallization of graphite and the processing technique at low temperature of $570^{\circ}C$ and this can be applied for the emitter tip of FEDs.

티타늄 용사피막을 이용한 주철의 레이저 표면합금화 (Laser Assisted Surface Alloying of Cast Iron with Thermal Sprayed Titanium Coatings)

  • 박홍일;김성규;이병우
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.393-401
    • /
    • 1997
  • Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a $CO_2$ laser to produce the wear resistant composite layer. From the experimental results of this study, it was possible to composite TiC particles on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of laser remelted cast iron substrate without titanium coating was about $1{\times}10^4$ K/s to $1{\times}10^5$ K/s in the order under the condition used in this study. The microstructure of alloyed layer consisted of three zones, that is, TiC particule crystallized zone (MHV $400{\sim}500$), the mixed zone of TiC particule+ledebulite (MHV $650{\sim}900$) and the ledebulite zone (MHV $500{\sim}700$). TiC particules were crystallized as a typical dendritic morphology. The secondary TiC dendrite arms were grown to the polygonized shape and were necking. And then the separated arms became cubic crystal of TiC at the slowly solidified zone. But in the rapidly solidified zone of fusion boundry, the fine granular TiC particules were grouped like grape.

  • PDF

RF Ar 플라즈마에서의 레이저 어블레이션 모델링 (Modeling of the Laser Ablation under the RF Ar Plasmas)

  • 소순열;임장섭;이진;정해덕;박계춘;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1408-1409
    • /
    • 2007
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present modeling, we adopt capacitively coupled plasma with ring electrode inserted in the space between the substrate and the target, graphite. This system may take an advantage of ${\mu}m$-sized droplets from the sheath electric field near the substrate. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF

소결된 텅스텐 재료의 용매에 의한 특성 평가 (Evaluation on Mechanical Properties of Sintered Tungsten Materials by Solvents)

  • 박광모;이상필;이진경
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.289-294
    • /
    • 2021
  • Tungsten (W) is used as a facing material for nuclear fusion reactors, and it is used in conjunction with structural materials such as copper alloy (CuCrZr), graphite, or stainless steel. On the other hand, since tungsten is a material with a high melting point, a method that can be manufactured at a lower temperature is important. Therefore, in this study, tungsten, which is a facing material, was attempted to be manufactured using a pressure sintering method. Material properties of sintered tungsten materials were analyzed for each solvent using two types of solvents, acetone and polyethylene glycol. The sintered tungsten material using acetone as a solvent exhibited a hardness value of about 255 Hv, and when polyethylene glycol was used, a hardness value of about 200 Hv was shown. The flexural strength of the sintered tungsten material was 870 MPa and 307 MPa, respectively, when acetone and polyethylene glycol were used as solvents. The sintered tungsten material using acetone as a solvent caused densification between particles, which served as a factor of increasing the strength.

Carbon Particle-Doped Polymer Layers on Metals as Chemically and Mechanically Resistant Composite Electrodes for Hot Electron Electrochemistry

  • Habiba, Nur-E;Uddin, Rokon;Salminen, Kalle;Sariola, Veikko;Kulmala, Sakari
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.100-111
    • /
    • 2022
  • This paper presents a simple and inexpensive method to fabricate chemically and mechanically resistant hot electron-emitting composite electrodes on reusable substrates. In this study, the hot electron emitting composite electrodes were manufactured by doping a polymer, nylon 6,6, with few different brands of carbon particles (graphite, carbon black) and by coating metal substrates with the aforementioned composite ink layers with different carbon-polymer mass fractions. The optimal mass fractions in these composite layers allowed to fabricate composite electrodes that can inject hot electrons into aqueous electrolyte solutions and clearly generate hot electron- induced electrochemiluminescence (HECL). An aromatic terbium (III) chelate was used as a probe that is known not to be excited on the basis of traditional electrochemistry but to be efficiently electrically excited in the presence of hydrated electrons and during injection of hot electrons into aqueous solution. Thus, the presence of hot, pre-hydrated or hydrated electrons at the close vicinity of the composite electrode surface were monitored by HECL. The study shows that the extreme pH conditions could not damage the present composite electrodes. These low-cost, simplified and robust composite electrodes thus demonstrate that they can be used in HECL bioaffinity assays and other applications of hot electron electrochemistry.

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

The quality investigation of 6H-SiC crystals grown by conventional PVT method with various SiC powders

  • Yeo, Im-Gyu;Lee, Won-Jae;Shin, Byoung-Chul
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.113-114
    • /
    • 2009
  • Silicon carbide is one of the most attractive and promising wide band-gap semiconductor material with excellent physical properties and huge potential for electronic applications. Up to now, the most successful method for growth of large SiC crystals with high quality is the physical vapor transport (PVT) method [1, 2]. Since further reduction of defect densities in larger crystal are needed for the true implementation of SiC devices, many researchers are focusing to improve the quality of SiC single crystal through the process modifications for SiC bulk growth or new material implementations [3, 4]. It is well known that for getting high quality SiC crystal, source materials with high purity must be used in PVT method. Among various source materials in PVT method, a SiC powder is considered to take an important role because it would influence on crystal quality of SiC crystal as well as optimum temperature of single crystal growth, the growth rate and doping characteristics. In reality, the effect of powder on SiC crystal could definitely exhibit the complicated correlation. Therefore, the present research was focused to investigate the quality difference of SiC crystal grown by conventional PVT method with using various SiC powders. As shown in Fig. 1, we used three SiC powders with different particles size. The 6H-SiC crystals were grown by conventional PVT process and the SiC seeds and the high purity SiC source materials are placed on opposite side in a sealed graphite crucible which is surrounded by graphite insulation[5, 6]. The bulk SiC crystal was grown at $2300^{\circ}C$ of the growth temperature and 50mbar of an argon pressure. The axial thermal gradient across the SiC crystal during the growth is estimated in the range of $15\sim20^{\circ}C/cm$. The chemical etch in molten KOH maintained at $450^{\circ}C$ for 10 min was used for defect observation with a polarizing microscope in Nomarski mode. Electrical properties of bulk SiC materials were measured by Hall effect using van der Pauw geometry and a UV/VIS spectrophotometer. Fig. 2 shows optical photographs of SiC crystal ingot grown by PVT method and Table 1 shows electrical properties of SiC crystals. The electrical properties as well as crystal quality of SiC crystals were systematically investigated.

  • PDF

자장여과 아크 소스에서 각 전자석이 플라즈마 인출에 미치는 영향 (The effects of solenoid magnet on plasma extraction in Filtered Vacuum Arc Source (FVAS))

  • 김종국;변응선;이구현;조영상
    • 한국진공학회지
    • /
    • 제10권4호
    • /
    • pp.431-439
    • /
    • 2001
  • 비정질 다이아몬드 박막(amorphous-Diamond a-B)을 증착하기 위하여 제작된 Filtered Vacuum Arc Source (FVAS)는 60도의 굽힘 각도를 가지는 토러스형 구조로 토러스 반경 266 mm, 플라즈마 덕트 반경 80 % 전체 길이 600 mm이며, 1 개의 영구자석 및 5 개의 전자석으로 되어있다. 플라즈마 덕트는 임의의 전압을 인가할 수 있도록 전기적으로 절연 시켰으며, 덕트 내부는 배플을 설치하여 macro-particle의 되튐 현상을 방지하였다. 사용된 음극은 직경 80 mm의 graphite이다. 각 전자석이 플라즈마 인출에 미치는 영향은 taguchi 실험계획법을 이용, 수치 모사와 실험을 행하였다. 소스 전자석과 인출 전자석은 아크의 안정성에 영향을 주었고, 빔 인출 전류는 낮은 소스 전자석 전류와 특정한 필터 전자석 전류에서 최대값을 나타내었다. 이때 소스, 인출, 굽힘, 반사, 출구 전자석의 전류값은 1 A, 3 A, 5 A, 5 A, 5 A였으며, 아크 전류 30 A일 때, 빔 전류 밀도 3.2 mA/$\textrm{cm}^2$, 평균 증착률 5 $\AA$/sec를 얻었다. 또한 플라즈마 덕트의 바이어스 전압 증가에 따라, 빔 전류 밀도는 증가하였으며, 더 효율적인 빔을 인출할 수 있었다.

  • PDF

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • 황창묵;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF