• 제목/요약/키워드: Graphite nanoplatelet

검색결과 7건 처리시간 0.029초

Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents

  • Alkhateb, H.;Al-Ostaz, A.;Cheng, A.H.D.
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.316-324
    • /
    • 2010
  • The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young's modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.

탄소나노튜브 및 그래핀 나노플레이트 폴리프로필렌 복합재 필름 압출 및 물성 평가 (A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films)

  • 김병주;;강구혁;황상하;박영빈;정인찬;최동혁;손동일
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.254-258
    • /
    • 2013
  • 본 연구에서는 폴리프로필렌과 다양한 탄소나노소재를 사용하여 제조한 복합재의 압출방향 및 권취속도에 따른 기계적 물성과 결정화도에 대한 연구를 수행하였다. 폴리프로필렌에 탄소나노소재를 균일하게 분산시키기 위해 미분쇄기에 폴리프로필렌 분말(<700 ${\mu}m$)과 탄소나노소재를 혼합한 후 나노복합재 필름 제조를 위해 압출기를 사용하였다. 나노복합재 필름의 결정화도를 분석하기 위해 differential scanning calorimetry를 이용하였다. 기계적 물성을 인장시험을 통해서 측정한 후 순수 폴리프로필렌 물성과 비교하였고, 압출 시 필름 권취속도에 대한 나노복합재 결정화도의 차이를 확인하였다. 탄소나노소재를 첨가함으로써 고분자 필름의 기계적 물성이 향상됨을 확인하였고, 그에 따른 결정화도 역시 증가하는 것을 확인하였다. 반면, 권취속도가 증가 할수록 압출물의 냉각속도도 역시 증가함으로써 결정화도가 오히려 감소함을 확인하였다.

Experimental investigating and machine learning prediction of GNP concentration on epoxy composites

  • Hatam K. Kadhom;Aseel J. Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.403-415
    • /
    • 2024
  • We looked at how the damping qualities of epoxy composites changed when different amounts of graphite nanoplatelets (GNP) were added, from 0% to 6% by weight. A mix of free and forced vibration tests helped us find the key GNP content that makes the damper ability better the most. We also created a Representative Volume Element (RVE) model to guess how the alloys would behave mechanically and checked these models against testing data. An Artificial Neural Network (ANN) was also used to guess how these compounds would react to motion. With proper hyperparameter tweaking, the ANN model showed good correlation (R2=0.98) with actual data, indicating its ability to predict complex material behavior. Combining these methods shows how GNPs impact epoxy composite mechanical properties and how machine learning might improve material design. We show how adding GNPs to epoxy composites may considerably reduce vibration. These materials may be used in industries that value vibration damping.

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi;Pucha, Raghuram V.;Bhuiyan, Md.A.;Kalaitzidou, Kyriaki
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.325-331
    • /
    • 2010
  • This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

Flexural, electrical, thermal and electromagnetic interference shielding properties of xGnP and carbon nanotube filled epoxy hybrid nanocomposites

  • Lee, Young Sil;Park, Yeon Ho;Yoon, Kwan Han
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.41-46
    • /
    • 2017
  • The microstructure, flexural properties, electrical conductivity, thermal conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites filled with multi-walled carbon nanotubes (CNTs), exfoliated graphite nanoplatelets (xGnPs) and CNT-xGnP hybrid filler were investigated. The EMI SE of the CNT-xGnP hybrid composite was higher than 25 dB at 100 MHz while that of the xGnP based composite was almost zero. The flexural modulus of the CNT-xGnP based epoxy composite continuously increased to 3.32 GPa with combined filler content up to 10 wt% while that of the CNT based epoxy composites slightly decreased to 1.96 GPa at 4 wt% CNT, and dropped to 1.57 GPa at 5 wt% loading, which is lower than that of epoxy. The CNT and CNT-xGnP samples had the same EMI SE at the same surface resistivity, because samples with the same surface conductivity have the same amount of the charge carriers.

Influence of Processing on Morphology, Electrical Conductivity and Flexural Properties of Exfoliated Graphite Nanoplatelets-Polyamide Nanocomposites

  • Liu, Wanjun;Do, In-Hwan;Fukushima, Hiroyuki;Drzal, Lawrence T.
    • Carbon letters
    • /
    • 제11권4호
    • /
    • pp.279-284
    • /
    • 2010
  • Graphene is one of the most promising materials for many applications. It can be used in a variety of applications not only as a reinforcement material for polymer to obtain a combination of desirable mechanical, electrical, thermal, and barrier properties in the resulting nanocomposite but also as a component in energy storage, fuel cells, solar cells, sensors, and batteries. Recent research at Michigan State University has shown that it is possible to exfoliate natural graphite into graphite nanoplatelets composed entirely of stacks of graphene. The size of the platelets can be controlled from less than 10 nm in thickness and diameters of any size from sub-micron to 15 microns or greater. In this study we have investigated the influence of melt compounding processing on the physical properties of a polyamide 6 (PA6) nanocomposite reinforced with exfoliated graphite nanoplatelets (xGnP). The morphology, electrical conductivity, and mechanical properties of xGnP-PA6 nanocomposite were characterized with electrical microscopy, X-ray diffraction, AC impedance, and mechanical properties. It was found that counter rotation (CNR) twins crew processed xGnP/PA6 nanocomposite had similar mechanical properties with co-rotation (CoR) twin screw processed or with CoR conducted with a screw design modified for nanoparticles (MCoR). Microscopy showed that the CNR processed nanocomposite had better xGnP dispersion than the (CoR) twin screw processed and modified screw (MCoR) processed ones. It was also found that the CNR processed nanocomposite at a given xGnP content showed the lowest graphite X-ray diffraction peak at $26.5^{\circ}$ indicating better xGnP dispersion in the nanocomposite. In addition, it was also found that the electrical conductivity of the CNR processed 12 wt.% xGnP-PA6 nanocomposite is more than ten times higher than the CoR and MCoR processed ones. These results indicate that better dispersion of an xGnP-PA6 nanocomposite is attainable in CNR twins crew processing than conventional CoR processing.