• Title/Summary/Keyword: Graphite layer

Search Result 238, Processing Time 0.095 seconds

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

The Crystal Structure of Cholesteryl Carbonates (콜레스테롤 카보네이트 결정구조에 관한 연구)

  • 박영자;신정미
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.8-19
    • /
    • 1996
  • Cholestryl Methyl and Propyl Carbonate(CH3OCOOC27H45, C3H7OCOOC27H45) are monoclinic, space group P21, with a=17.014(1), b=7.682(1), c=10.612(1)Å, β=103.05(1)°, Z=2, V=1351.16Å3, Dc=1.09 g/cm3 for methyl carbonate, and with a=13.683(1), b=11.864(2), c=18.904(2)Å, β=106.30(1)°, Z=4, V=2945.4Å3, Dc=1.06 g/cm3, Dm=1.06 g/cm3 for propyl carbonate. The intensity data were collected on an Enraf-Nonius CAD-4 diffractometer with a graphite monochromated Cu-Kα radiation. The structure was solved by direct methods and refined by full matrix least-squares methods. The final R factor was 0.051 for 2323 observed reflections for methyl carbonate and 0.074 for 3323 observed reflections for propyl carbonate. Compared with other cholesteryl derivatives, the cholesteryl ring and tail region of the molecules are normal. The molecules are stacked in clearly separated layers. At center of the layer, there are cholesteryl-C(17) side chain interactions. The interface region between layers is occupied by the loosely packed methyl carbonate chains. The structure of cholesteryl propyl carbonates have two propyl carbonates have two molecules(A, B) that are not related by crystal symmetry and have their tetracyclic system almost parallel to each other. Cholesteryl-cholesteryl interactions between symmetry related A-molecules, and cholesteryl-C(17) side chain interactions between symmetry related B-molecules occur at the center of the layers and these molecules stack along 2₁ screw axes. There are also C(17)chain-carbonate chain and C(17)chain-C(17)chain interactions in the interface region between layers. There is efficient packing between cholesteryl ring systems in propyl carbonates. Temperature ranges of cholesteric mesophases of cholesteryl alkyl cargonates are narrow for methyl, pentyl and hexyl carbonates, and rather broader for ethyl and propyl carbonates. Cholesteryl-isotropic transitions change very little with chain length.

  • PDF

Prediction of the Tritium Behavior in Very High Temperature Gas Cooled Reactor Using TRITGO (TRITGO 코드를 이용한 초고온가스로 (VHTR) 삼중 수소 거동 예측)

  • Park, Jong-Hwa;Park, Ik-Kyu;Lee, Won-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.113-120
    • /
    • 2008
  • In this study, The TRITGO code was introduced, which can predict the amount of tritium production, it's transport, removal, distribution and the level of contamination for the produced hydrogen by the tritium on the VHTR (very high temperature gas cooled reactor). The TRITGO code was improved so that the permeation to the IS Iodine Sulfide) loop for producing the hydrogen can be simulated. The contamination level of the produced hydrogen by the tritium was predicted by the improved code for the VHTR with 600MW thermal power. The contamination level for the produced hydrogen by tritium was predicted as 0.055 Bq/$H_2-g$. This level is three order of lower than the regulation value of 56 Bq/$H_2-g$ from Japan. From this study, the following results were obtained. it is important that the fuel coating (SiC layer) should be kept intact to prevent the tritium from releasing. Also it is necessary that the level of impurity such as 3He and Li in the helium coolant and the reflector consisting of the graphite should be kept as low as possible. It was found that the capacity of the purification system for filtering the impurities directly from the coolant will be the important design parameter.

Fabrication and Characterization of Porous Carbon Electrode for Electrosorption (전기흡착용 다공성 탄소전극의 제조 및 특성 분석)

  • Park, Nam-Soo;Choi, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.409-414
    • /
    • 2008
  • Porous carbon electrode for electrosorption was prepared by a wet phase inversion method. Carbon slurry that was a mixture of activated carbon powder(ACP) and PVdF solution was cast directly upon a graphite sheet by means of a casting knife. Porous carbon electrodes were fabricated by immersing the cast film in pure water as a non solvent. Physical and electrochemical properties of carbon electrodes prepared with various ACP contents(50.0, 75.0, 83.3, 87.5, 90.0 wt %). From the SEM images we can verify that the electrode was porous. The average pore sizes determined for the electrodes fabricated with various ACP contents ranged from 72.7 to 86.4 nm and the size decreased as the ACP content increased. The electrochemical properties were characterized by cyclic voltammetry(CV) method. All of the voltammograms showed typical behavior of an electric double layer charging/discharging on the carbon surface. The capacitance increased with the ACP content and the values ranged from 2.18 F/cm$^2$ for 50 wt% ACP to 4.77 F/cm$^2$ for 90 wt% ACP.

Field Emission Properties of Multiwalled Carbon Nanotubes Synthesized by Pin-to-Plate Type Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (Pin-to-plate Type 대기압 PECVD 방법을 이용해 성장된 다중벽 탄소나노튜브의 전계방출 특성연구)

  • Park Jae-Beom;Kyung Se-Jin;Yeom Geun-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.374-379
    • /
    • 2006
  • In this study, carbon nanotubes (CNTs) were grown on glass substrates coated with Ni/Cr by an atmospheric pressure plasma enhanced chemical vapor deposition(AP-PECVD) and their structural and electrical characteristics were investigated as a possible application to the field emitter of field emission display (FED) devices. The substrate temperature ($400{\sim}500^{\circ}C$) were varied and the grown CNTs were multi wall CNTs (at $500^{\circ}C$, 15 - 20 layers of graphene sheets, distance of each layer : 0.3nm, inner diameter: 10 - 15nm, outer diameter: 30 - 40nm). The ratio of defective carbon peak to graphite carbon peak of the CNTs grown at $500^{\circ}C$ (C measured by fourier transform(FT)-Raman was 0.772 $I_D / I_G$ ratio. When field emission properties were measured, the turn-on field was $2.92V/{\mu}m$ and the emission field at $1mA/cm^2$ was $5.325V /{\mu}m$.

Overview of Technology for Fixation of Carbon Dioxide Using Microalgae (미세조류를 이용한 이산화탄소 고정화 기술 현황)

  • Jeon, Seon-Mi;Kim, In Hae;Ha, Jong-Myung;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.145-150
    • /
    • 2008
  • In this work we have studied the antifouling properties of the hydrophobic sol-gel modified sensing membrane and its optical properties for sensor application. E. coli JM109, B. cereus 318 and P. pastoris X-33 were cultivated in confocal cultivation dishes with glass surface, respectively. The glass surface was coated with the hydrophobic sol-gels prepared by the dimethoxy-dimethyl-silane (DiMe-DMOS) and tetramethyl-orthosilicate (TMOS). After cultivation, microorganisms adhered on the surface coated with sol-gels and glass surface were dyed by gram-staining method and the numbers of microorganisms were analyzed based on the image data of the scanning electronic microscope (SEM). A great number of microorganisms, about $2{\sim}3{\times}10^4/mm^2$, was adhered on the glass surfaces which no hydrophobic sol-gels were coated. But, the antifouling effect of the hydrophobic sol-gels was large, that microorganisms of less than $200{\sim}300/mm^2$ were adhered on the coated glass surface. The performance of the sensing membranes for detection of pH and dissolved oxygen was enhanced by recoating the light insulation layer prepared with the mixture of the hydrophobic sol-gel and graphite particles.

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.