• 제목/요약/키워드: Graphite (Carbon) block

검색결과 6건 처리시간 0.022초

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

흑연블록 제조를 위한 등압성형 시 일축가압 예비성형의 압력변화에 따른 기계적 및 전기적 특성 변화 (Changes in Mechanical and Electrical Properties as a Function of Unidirectional Pressure Changes in Preforming While Isostatic Pressing for Graphite Block Fabrication)

  • 변태섭;전동표;이상혜;이상우;노재승
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.35-40
    • /
    • 2023
  • In this study, a graphite block is fabricated using artificial graphite processing byproduct and phenolic resin as raw materials. Mechanical and electrical property changes are confirmed due to the preforming method. After fabricating preforms at 50, 100, and 150 MPa, CIP molding at 150 MPa is followed by heat treatment to prepare a graphite block. 150UP-CIP shows a 12.9% reduction in porosity compared with the 150 MPa preform. As the porosity is decreased, the bulk density, flexural strength, and shore hardness are increased by 14.9%, 102.4%, and 13.7%, respectively; and the deviation of density and electrical resistivity are decreased by 51.9% and 34.1%, respectively. Therefore, as the preforming pressure increases, the porosity decreases, and the electrical and mechanical properties improve.

Study on Nanocomposite Thermoplastic Elastomer Gels

  • Paglicawan Marissa A.;Balasubramanian Maridass;Kim, Jin-Kuk
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.370-370
    • /
    • 2006
  • Thermoplastic elastomer gels, which has molecular networks composed of a microphase-separated multiblock copolymer swollen to a large extent by a low volatility mid-block selective solvent such as white oil have various applications. In this particular study, the effect of several network-forming nanoscale fillers such as two different graphite particles and carbon nanotube on the properties of TPE gels prepared from a microphaseordered poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) triblock copolymer with an EB compatible white oil was studied. The linear viscoelastic behavior, sol-gel transition, x-ray diffraction and mechanical properties were discussed. The properties of thermoplastic elastomer gels hybrid with graphite prepared by mixing Poly(styrene-b-ethylene-co-butylene)-b-styrene) with paraffin oil and different amount of expandable graphite were found to increase the mechanical properties at only lower graphite concentration but tends to decrease when paraffin oil/SEBS ratio is lower. The gelation temperature is the same for all TPE gels with different amounts of graphite. Both storage (G') modulus loss (G") modulus of TPE gels slightly increase with addition of graphite.

  • PDF

흑연 금형 표면 보호용 PCS 코팅층의 열경화에 의한 조성비 조절 특성 연구 (Study on the Compositional Characteristics of the PCS Coating Layer by Curing Treatment for the Protection of Graphite Mold Surface)

  • 김경호;이윤주;신윤지;정성민;이명현;배시영
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.293-299
    • /
    • 2020
  • The characteristics of the polycarbosilane (PCS)-based composite ceramic layer was studied by controlling the curing temperature. The stress at the interface of the graphite and SiOC composite layer was evaluated v ia finite element analysis. As a result, the tensile stress was released as the carbon ratio of the SiC decreases. In experiment, the SiOC layers were coated on the VDR graphite block by dip-coating process. It was revealed that the composition of Si and C was effectively adjusted depending on the curing temperature. As the solution-based process is employed, the surface roughness was reduced for the appropriate PCS curing temperature. Hence, it is expected that the cured SiOC layer can be utilized to reduce cracking and peeling of SiC ceramic composites on graphite mold by improving the interfacial stress and surface roughness.

그라파이트 블록을 원료로써 재활용한 β-SiC 분말 합성 (Synthesis of β-SiC Powder using a Recycled Graphite Block as a Source)

  • 민닷 응우옌;방정원;김수룡;김영희;정은진;황규홍;권우택
    • 자원리싸이클링
    • /
    • 제26권1호
    • /
    • pp.16-21
    • /
    • 2017
  • 본 연구는 SiC 결정 성장을 위한 원료 분말 합성법에 관한 것이다. ${\beta}-SiC$ 분말들은 높은 온도 조건(>$1400^{\circ}C$)에서 실리콘 분말과 탄소 분말의 반응에 의해서 합성 된다. 이 반응은 진공 상태(또는 Ar 가스 분위기)에서 실리콘+탄소 혼합물이 반응하고 다결정의 SiC 분말을 형성하기 충분한 횟수를 거쳐 그라파이트 도가니 안에서 진행된다. 최종 결과물의 특성들은 X-ray 회절, SEM/EDS, 입도 분석 및 ICP-OES을 통해 분석되었다. 또한, 최종 결과물의 순도는 the Korean Standard KS L 1612에 의거해서 분석했다.

GCV소재의 DLC 코팅 마모특성에 관한 연구 (Study on Wear Properties of GCV Materials with DLC Coating)

  • 이수철;김남석;남기우;안석환;김현수
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.71-75
    • /
    • 2010
  • Although Graphite Compacted Vermicular (GCV) was first observed in 1948, the narrow range for stable foundry production precluded the high volume application of GCV to complex components such as cylinder blocks and heads until advanced process control technologies became available. This, in turn, had to await the advent of modern measurement electronics and computer processors. Following the development of foundry techniques and manufacturing solutions, primarily initiated in Europe during the 1990s, the first series production of GCV cylinder blocks began during 1999. Today, more than 40,000 GCV cylinder blocks are produced each month for OEMs, including Audi, DAF, Ford, Hundai, MAN, Mercedes, PSA, Volkswagen, and Volvo. Given that new engine programs are typically intended to support three to four vehicle generations, the chosen engine materials must satisfy current design criteria and also provide the potential for future performance upgrades without changing the overall block architecture. With at least a 75% increase in the ultimate tensile strength, a 40% increase in the elastic modulus, and approximately double the fatigue strength of either iron or aluminum, GCV is ideally suited to meet current and future of engine design and performance requirements.