• Title/Summary/Keyword: Graphite/epoxy composite

Search Result 113, Processing Time 0.025 seconds

A Study on the fatigue Behavior of Aluminum Repaired by Graphite/Epoxy Composite - Pretreatment Effect of Aluminum (탄소섬유/에폭시 복합재로 보수된 알루미늄의 피로특성에 대한 연구 -알루미늄 표면처리 효과)

  • 김만태;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.149-154
    • /
    • 2004
  • For a present study, we investigated fatigue behavior of cracked aluminum repaired by unidirectional graphite/epoxy composite material. Three different specimens were used in the fatigue tests: cracked aluminum, cracked aluminum repaired by graphite/epoxy composite patch, and plasma-treated aluminum repaired by graphite/epoxy composite patch. The surface of the aluminum was treated using a DC plasma. The results showed that the fatigue crack growth behavior of cracked aluminum was significantly improved by repairing the cracked area with a composite patch. Specifically, the specimen repaired by composite patch showed about 300% more fatigue lift than the cracked aluminum. In particular, the plasma-treated aluminum repaired by composite patch showed almost 12 % more fatigue life than the cracked aluminum repaired by graphite/epoxy composite patch. The increased fatigue life of plasma-treated case was attributed to the surface roughness of aluminum by plasma treatment.

A Study on the Characteristics of New Type of Composite Bipolar Plate for the PEM Fuel Cell (고분자전해질 연료전지용 새로운 타입의 복합재료 분리판의 특성연구)

  • Kim, Jong-Wan;Lee, Jin-Sun;Sun, Kyung-Bok;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.180-183
    • /
    • 2009
  • Composite bipolar plates offer several advantages of low cost, light weight, and ease of manufacturing compared to traditional graphite plate. However, it is difficult to achieve both high electrical conductivity and high flexural strength. In this study, the hybrid carbons filled epoxy composite bipolar plates were fabricated to test electrical conductivity and flexural properties. Graphite powders were used as the main conducting filler and continuous carbon fiber fabrics were inserted to improve the mechanical properties of the composite. This hybrid composite showed improved in-plane electrical conductivity and flexural property. The moldability of the hybrid composite was also improved comparing to the continuous prepreg composite. This study suggested that the continuous carbon fiber inserted graphite/epoxy composites can be a potential candidate material to overcome the disadvantages of conventional graphite composite or continuous prepreg composite bipolar plates.

  • PDF

Influence of Graphite Epoxy Composite Material on the Electrochemical Galvanic Corrosion of Metals (금속재료의 전기화학적 갈바닉 부식에 미치는 GECM의 영향)

  • Yoo, Y.R.;Son, Y.I.;Shim, G.T.;Kwon, Y.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.27-39
    • /
    • 2009
  • Non metallic composite materials, for example, GECM(graphite epoxy composite material) show high specific strength because of low density. These kinds of non metallic composite materials improved the structural effectiveness and operation economics. However, if these materials contacted several metals, corrosion can be arisen since non metallic composite materials have electrical conductivity. This paper dealt with galvanic corrosion between graphite epoxy composite material and several metals. Base on the electrochemical galvanic corrosion test between GECM and metals, corrosion current of carbon steel and aluminium increased with time but corrosion current of stainless steels and titanium decreased and galvanic potential increased. This behavior shows the galvanic corrosion depends upon the presence of passive film. Also, galvanic effect of GECM coupled with ferrous alloys and non-ferrous alloys was lower than that of 100% graphite, which is attributed to lower exposed area of graphite fiber in the GECM than apparent area of the GECM specimen used for the calculation of galvanic current in this work.

Thermal Curing and Electrical Properties of Epoxy/Graphite/Expanded Graphite Composite for Bipolar Plate of Pemfc (PEMFC 바이폴라 플레이트 제조용 EPOXY/GRAPHITE/EXPANDED GRAPHITE 복합재료의 열경화 및 전기적 성질)

  • Lee, Jae-Young;Lee, Hong-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.827-834
    • /
    • 2011
  • Epoxy/graphite/expanded graphite composites have been prepared in various weight ratios and thermal degradation and electrical properties were estimated in order to use for the bipolar plate materials in PEMFC. Thermogravimetric analysis (TGA) showed that the epoxy/graphite system cured by a curing agent GX-533 was most proper because its weight loss until $80^{\circ}C$ at which PEMFC would be operated was 0.3 wt%, and differential scanning calorimetry (DSC) analysis showed its cure temperature would be sufficient at $80^{\circ}C$. The activation energy for the cure reaction was 132.0 kJ/mol and the pre-exponential factor was $1.76{\times}10^{17}min^{-1}$. Electrical conductivity on the surface of the bipolar plate prepared under a pressure of 200 $kgf/cm^2$ was increased from 4 to 25 $S/cm^2$ by increasing expanded graphite (EG) content from 50 phr to 90 phr. The percolation threshold was initiated around 75 phr and the corrosion rate at 80 phr was 1.903 $uA/cm^2$.

Tensile Properties of CERP Fabric/Unidirectional Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 직조/일방향 복합재료의 인장 물성 측정)

  • 김명곤;김철웅;강상국;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.115-118
    • /
    • 2003
  • This research aims to measure mechanical tensile properties of CFRP composites for cryogenic tank material. Through the cryogenic chamber, tensile tests are peformed under cryogenic temperature for graphite/epoxy fabric specimen aged at $-150^{\circ}C$ for 30hrs with load and graphite/epoxy unidirectional specimen 3-cycled from RT to $-100^{\circ}C$ with load. For graphite/epoxy fabric specimen, tensile modulus showed to increase after aging at cryogenic temperature(CT) while to decrease after aging at room temperature(RT) and tensile strength is more decreased after CT-aged than at RT-aged. For graphite/epoxy unidirectional specimen, tensile modulus was almost not changed after 3-cycling but strength showed the trend of decrease as increase the number of cycling.

  • PDF

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Crippling Test of Graphite/Epoxy Stringers (Graphite/Epoxy 스트링거의 크리플링 실험)

  • 최상민;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • In author's previous paper, a finite element algorithm was presented to calculate the buckling and crippling stresses of composite laminated stringers. In this study, for the validation of the finite element analysis, Z-section composite stringers of different lengths and flange-widths were tested in axial compression. The stacking sequence of graphite/epoxy is [$\pm$45/0/90]s. Strain gages were attached to each specimen to get the strain response. Deflection and end-shortening were obtained by a displacement transducer. The buckling and crippling loads are determined from the strain response, load vs. end-shortening curves, and load vs. out-of-plane deflection curves. Comparison between finite element and experimental results shows good agreement in the buckling, local buckling, and crippling stresses.

  • PDF

Effect of Surface-Modified Carbon Fiber on the Mechanical Properties of Carbon/Epoxy Composite for Bipolar Plate of PEMFC (표면처리 탄소섬유가 PEMFC용 탄소/에폭시 복합재료 분리판의 기계적 강도에 미치는 영향)

  • LEE, HONGKI;HAN, KYEONGSIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • Epoxy/carbon composite was used to prepare a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Phenol novolac-type epoxy and diglycidyl ether of bisphenol A (DGEBA)-type epoxy mixture was used as a matrix and graphite powder, carbon fiber (CF) and graphite fiber (GF) were used as carbon materials. In order to improve the mechanical properties of the bipolar plate, surface-modified CF was incorporated into the epoxy/carbon composite. To determine the cure temperature of the epoxy mixture, differential scanning calorimetry (DSC) analysis was performed and the data were introduced to Kissinger equation in order to get reaction activation energy and pre-exponential factor. Tensile and flexural strength was obtained by using universal testing machine (UTM). The surface morphology of the fractured specimen and the interfacial morphology between epoxy matrix and CF or GF were observed by a scanning electron microscopy (SEM).

Delamination of a composite laminated under monotonic loading

  • Achache, Habib;Benzerdjeb, Abdelouahab;Mehidi, Abdelkader;Boutabout, Benali;Ouinas, Djamel
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.597-605
    • /
    • 2017
  • Our work aims to analyze using the finite element method the evolution of the stress intensity factor (SIF) parameter K of three laminated folded plates stacks [$+{\alpha}$, $-{\alpha}$], made of the same epoxy matrix and different reinforcement fibers (boron, graphite and glass). Our results show that the angle of orientation of the boron/epoxy composite has no great influence on the variation of the parameter KI. Compared to composite graphite/epoxy and glass/epoxy, the laminated composite boron/epoxy reduces more the SIF KI in the middle of the plate for angles $0^{\circ}{\leq}{\alpha}{\leq}30^{\circ}$.

Low-Velocity Impact Response of Hybrid Laminated Composite Plate (혼합적층된 복합재료평판의 저속충격응답)

  • Lee, Young-Shin;Kang, Kun-Hee;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.713-722
    • /
    • 1991
  • 본 연구에서는 graphite/epoxy와 glass/epoxy 그리고 graphite/epoxy와 kevl- ar/epoxy의 혼합적층된 복합재료 평판의 저속충격에 대한 응답을 유한요소 모델을 사 용하여 수치해석 한후, 각각의 단일적층판들의 결과와 비교하였으며, 이때의 접촉력 관계식은 Yang과 Sun이 제안한 수정된 접촉법칙을 이용하였다. 또한, 수치해석 결과 에서의 충격자의 속도변화로써 혼합적창판 배열에 따른 에너지 흡수율을 계산하였고, 이를 충격특성이 취약한 graphite/epoxy 단일 적층판의 결과와 비교 고찰하였다.