DOI QR코드

DOI QR Code

Thermal Curing and Electrical Properties of Epoxy/Graphite/Expanded Graphite Composite for Bipolar Plate of Pemfc

PEMFC 바이폴라 플레이트 제조용 EPOXY/GRAPHITE/EXPANDED GRAPHITE 복합재료의 열경화 및 전기적 성질

  • Lee, Jae-Young (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University) ;
  • Lee, Hong-Ki (Hydrogen Fuel Cell Parts and Applied Technology RIC, Woosuk University)
  • 이재영 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터) ;
  • 이홍기 (우석대학교 수소연료전지 부품 및 응용기술 지역혁신센터)
  • Received : 2011.11.28
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

Epoxy/graphite/expanded graphite composites have been prepared in various weight ratios and thermal degradation and electrical properties were estimated in order to use for the bipolar plate materials in PEMFC. Thermogravimetric analysis (TGA) showed that the epoxy/graphite system cured by a curing agent GX-533 was most proper because its weight loss until $80^{\circ}C$ at which PEMFC would be operated was 0.3 wt%, and differential scanning calorimetry (DSC) analysis showed its cure temperature would be sufficient at $80^{\circ}C$. The activation energy for the cure reaction was 132.0 kJ/mol and the pre-exponential factor was $1.76{\times}10^{17}min^{-1}$. Electrical conductivity on the surface of the bipolar plate prepared under a pressure of 200 $kgf/cm^2$ was increased from 4 to 25 $S/cm^2$ by increasing expanded graphite (EG) content from 50 phr to 90 phr. The percolation threshold was initiated around 75 phr and the corrosion rate at 80 phr was 1.903 $uA/cm^2$.

Keywords

References

  1. F. A. de Bruijn, V. A. T. Dam1 and G. J. M. Janssen, "Durability and Degradation Issues of PEM Fuel Cell Components", Fuel Cells, Vol. 8, No. 1, 2008, p. 3. https://doi.org/10.1002/fuce.200700053
  2. Arnd Garsuch, D. A. Stevens, R. J. Sanderson, S. Wang, R. T. Atanasoski, S. Hendricks, M. K. Debe, and J. R. Dahna, "Alternative Catalyst Supports Deposited on Nanostructured Thin Films for Proton Exchange Membrane Fuel Cells", J. Electrochem. Soc. Vol. 157, No.2, 2010, p. B187. https://doi.org/10.1149/1.3261855
  3. Y. D. Lim, D. W. Seo, H. C. Lee, H. M. Jin, MD. Awlad Hossain, I. S. Jeong and W. G. Kim, "Preparation and Properties of Sulfonated Poly(ether Sulfone)s Containing BFBN for PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 5, 2011, p. 579.
  4. L. Peng, D. Liu, P. Hu, X. Lai and J. Ni, "Fabrication of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell by Flexible Forming Process-Numerical Simulations and Experiments", J. Fuel Cell Sci. Technol., Vol. 7, 2010, p. 031009. https://doi.org/10.1115/1.3207870
  5. B. Cunningham and D. G. Baird, "The Development of Economical Bipolar Plates for Fuel Cells", J. Mater. Chem., Vol. 16, 2006, p. 4385. https://doi.org/10.1039/b611883f
  6. A. J. Appleby and F. R. Foulkes, "Fuel Cell Hand Book", Van Nostrand Reinhold, New York, 1989.
  7. E. Rasten, G. Hagen and R. Tunold, "Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte", Electrochim. Acta, Vol. 48, 2003, p. 3945. https://doi.org/10.1016/j.electacta.2003.04.001
  8. V. Mehta and J. S. Cooper, "Review and Analysis of PEM Fuel Cell Design and Manufacturing", J. Power Sources, Vol. 144, 2003, p. 32.
  9. G. O. Mepsted and J. M. Moore, "Handbook of Fuel Cells - Fundamentals Technology and Applications", John Wiley & Sons, Ltd., 2003, pp. 286-293.
  10. B. D. Cunningham, J. Huang and D. G. Baird, "Development of Bipolar Plates for Fuel Cells from Graphite Filled Wet-lay Material and a Thermoplastic Laminate Skin Layer", J. Power Sources, Vol. 165, 2007, p. 764. https://doi.org/10.1016/j.jpowsour.2006.12.035
  11. E. A. Cho, U. S. Jeon, H. Y. Ha, S. A. Hong and I. H. Oh, "Characteristics of Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells", J. Power Sources, Vol. 178, 2004, p. 178.
  12. H. S. Lee, H. J. Kim, S. G. Kim and S. H. Ahn, "Evaluation of Graphite Composite Bipolar Plate for PEM (Proton Exchange Membrane) Fuel Cell: Electrical, Mechanical, and Moulding Properties", J. Mater. Process. Technology, Vol. 187-188, 2007, p. 425. https://doi.org/10.1016/j.jmatprotec.2006.11.213
  13. A. Heinzel, F. Mahlendorf and C. Jansen, "The Encyclopedia of Electrochemical Power Sources", Elsevier, 2009, pp. 810-8169.
  14. C. C. Riccardi, H. E. Adabbo and R. J. J. Williams, "Curing Reaction of Epoxy Resins with Diamines", J. Appl. Polym. Sci., Vol. 29, 1984, p. 2481. https://doi.org/10.1002/app.1984.070290805
  15. J. Y. Lee, M. J. Shim and S. W. Kim, "Synthesis of Liquid Crystalline Epoxy and Its Mechanical and Electrical Characteristics - Curing Reaction of LCE with Diamines by DSC Analysis", J. Appl. Polym. Sci., Vol. 83, 2002, p. 2419. https://doi.org/10.1002/app.10204
  16. C. S. Chern and G. W. Poehlein, "A Kinetic Model for Curing Reaction of Epoxides with Amines", Polym. Eng. Sci., Vol. 27, 1987, p. 788. https://doi.org/10.1002/pen.760271104
  17. J. Y. Lee, M. J. Shim and S. W. Kim, "Effect of MDA-endcapped CTBN on the cure kinetics of epoxy system by autocatalytic cure rate expression", J. Mater. Sci., Vol. 35, 2000, p. 3529. https://doi.org/10.1023/A:1004801227150