This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.
A reliable automatic passenger counting (APC) system is a key point in transportation related to the efficient scheduling and management of transport routes. In this study, we introduce a lightweight head detection network using deep learning applicable to an embedded system. Currently, object detection algorithms using deep learning have been found to be successful. However, these algorithms essentially need a graphics processing unit (GPU) to make them performable in real-time. So, we modify a Tiny-YOLOv3 network using certain techniques to speed up the proposed network and to make it more accurate in a non-GPU environment. Finally, we introduce an APC system, which is performable in real-time on embedded systems, using the proposed head detection algorithm. We implement and test the proposed APC system on a Samsung ARTIK 710 board. The experimental results on three public head datasets reflect the detection accuracy and efficiency of the proposed head detection network against Tiny-YOLOv3. Moreover, to test the proposed APC system, we measured the accuracy and recognition speed by repeating 50 instances of entering and 50 instances of exiting. These experimental results showed 99% accuracy and a 0.041-second recognition speed despite the fact that only the CPU was used.
인공지능의 학습 작업은 연산량이 많아 고성능 연산 장치인 GPU(Graphics Processing Unit)를 필요로 하며, GPU 장치의 성능은 학습 작업의 실행 성능에 직접적으로 영향을 미치는 요소 중 하나로 작용한다. 인공지능 작업을 처리하기 위해 많이 사용되는 텐서플로의 경우 GPU를 사용해 연산을 수행할 때 기본적으로 거의 모든 GPU 메모리 영역을 단일 학습 작업이 점유하도록 GPU 메모리를 관리한다. 이 방법은 컴퓨팅 자원 중 확장성이 가장 낮은 GPU 메모리의 단편화를 방지하기 위해 사용되는 방법이지만, 하나의 학습 작업이 GPU를 점유하게 되면, 실제 GPU 메모리 사용량과 상관없이 다른 프로세스는 GPU를 사용할 수 없는 문제를 유발한다. 특히, 전이학습, 소규모 학습과 같이 상대적으로 작업 규모가 작은 경우에는 전체 GPU 메모리 용량 중 대부분의 영역이 낭비된다. 본 논문에서는 컨테이너 환경에서 텐서플로의 기본 GPU 메모리 사용 방식으로 인해 다수의 학습 작업을 동시 실행하는 것이 불가능한 문제를 확인하고 GPU 메모리 사용량을 제한한 경우와 하지 않은 경우에 실제 GPU 메모리 사용량과 학습 작업의 실행 시간에 대한 성능 비교를 통해 GPU 메모리의 단편화 방지가 성능에 유의미한 요소인지 검증한다.
양안식 3차원 방송의 경우 좌우 두 시점에 해당하는 영상을 동시에 전송해야 하기 때문에 전송 대역폭의 부담이 매우 크다. 이러한 부담을 줄이기 위해 좌우 시점의 두 영상을 전송하는 대신에 좌영상과 이에 해당하는 깊이맵을 부호화하여 전송하는 방법이 있다. 이러한 3차원 방송 시스템의 수신단에서는 좌영상과 깊이맵을 복호한 뒤에 우영상을 만들어 좌우 영상을 실시간으로 출력한다. 본 논문에서는 좌영상과 깊이맵을 이용하여 가상시점 영상을 생성할 때 생기는 빈 공간을 효율적으로 채우는 기법을 제안하고, 전 과정의 실시간 처리를 위해 이를 GPU상에서 병렬로 처리되도록 구현했다. 그 결과 효과적으로 홀 채움을 수행하면서 CPU 대비 15배 이상 빠르게 양안식 영상을 생성할 수 있었다.
최근 OpenGL ES 2.0이 개정됨에 따라 모바일 기기에 Shader 3.0모델을 지원 가능한 프로세서가 요구된다. 이 쉐이더 3.0 모델의 지원과 관련하여 명령어의 길이의 증가가 필요하고, 이는 메모리 용량의 증가를 초래한다. 본 논문에서는 가변길이 구조와 유닛구조를 채택한 새로운 명령어 구조를 제안한다. 이 명령어 구조는 쉐이더 3.0 모델을 지원하고 명령어 필드 낭비를 줄일 수 있도록 최대 4개의 32비트 유닛 명령어가 가변적으로 조합되어 수행된다.
본 논문에서는 가상화폐이자 전자 거래의 신뢰성 있는 계약을 보장해 줄 수 있는 이더리움 (Ethereum)의 채굴 과정을 소개하고 향후 활용 방안을 제안한다. 이더리움의 거래 내역은 블록체인 (BlockChain)에 저장이 되며, 반영구적으로 삭제가 불가능하다. 이로써 전자상거래의 최대 단점인 사기 거래가 사전에 방지가 되고, 안전하고 깨끗한 거래가 성사될 수 있도록 하는 것이 목표이다. 이더리움 채굴을 위해서는 비디오카드의 GPU (Graphics Processing Unit)를 이용하였으며, 지갑 생성, 비디오카드 드라이버 설치, pool 서버 가입, 채굴 소프트웨어 설치 및 GPU 오버클럭킹 등의 과정을 수행하였다.
In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).
In this paper, a parallel algorithm of nonlinear dynamic analysis of three-dimensional (3D) reinforced concrete (RC) frame structures based on the platform of graphics processing unit (GPU) is proposed. Time integration is performed using Newmark method for nonlinear implicit dynamic analysis and parallelization strategies are presented. Correspondingly, a parallel Preconditioned Conjugate Gradients (PCG) solver on GPU is introduced for repeating solution of the equilibrium equations for each time step. The RC frames were simulated using fiber beam model to capture nonlinear behaviors of concrete and reinforcing bars. The parallel finite element program is developed utilizing Compute Unified Device Architecture (CUDA). The accuracy of the GPU-based parallel program including single precision and double precision was verified in comparison with ABAQUS. The numerical results demonstrated that the proposed algorithm can take full advantage of the parallel architecture of the GPU, and achieve the goal of speeding up the computation compared with CPU.
디지털 홀로그램은 일반적으로 computer generated hologram(CGH)기법에 의해서 생성된다. 하지만 원리적으로 CGH 기법은 많은 연산량과 복잡도를 요구하고 있기 때문에 실시간으로 디지털 홀로그램을 생성하는 것은 매우 어렵다. 본 논문에서는 CGH 고속연산을 위해 graphics processing unit(GPU)의 병렬처리구조인 CUDA를 사용하였고, 추가적으로 다중 GPU 연산처리를 위해 OpenMP를 사용하였다. 더 나아가 이를 최적화하기 위해서 상수화, 벡터화, 루프풀기 등의 기법들을 제안한다. 결과적으로, 본 논문에서 제안된 기법을 통해서 기존 CPU에서의 CGH 연산속도에 비해 약 8,300배 정도의 속도를 개선할 수 있었다.
Since the recent launch of Microsoft Xbox Kinect, research on 3D human pose estimation has attracted a lot of attention in the computer vision community. Kinect shows impressive estimation accuracy and real-time performance on massive graphics processing unit hardware. In this paper, we focus on further reducing the computation complexity of the existing state-of-the-art method to make the real-time 3D human pose estimation functionality applicable to devices with lower computing power. As a result, we propose two simple approaches to speed up the random-forest-based human pose estimation method. In the original algorithm, the random forest classifier is applied to all pixels of the segmented human depth image. We first use a multi-scale approach to reduce the number of such calculations. Second, the complexity of the random forest classification itself is decreased by the proposed cascade approach. Experiment results for real data show that our method is effective and works in real time (30 fps) without any parallelization efforts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.