In this paper, we propose a novel architecture of a general graphics shader processor without a dedicated hardware. Recently, mobile devices require the high performance graphics processor as well as the small size, low power. The proposed shader processor is a GP-GPU(General-Purpose computing on Graphics Processing Units) to execute the whole OpenGL ES 2.0 graphics pipeline by using shader instructions. It does not require the separate dedicate H/W such as rasterization on this fully programmable capability. The fully programmable 3D graphics shader processor can reduce much of the graphics hardware. The chip size of the designed shader processor is reduced 60% less than the sizes of previous processors.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.349-350
/
2022
Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. In this work, we developed an FPGA-based (Field Programmable Gate Array) AI system , and report on image recognition system to realize the AI system.
Since the stereoscopic 3-dimensional (3D) video that provides users with a realistic multimedia service requires twice as much data as 2-dimensional (2D) video, it is difficult to construct the fast system. In this paper, we propose a fast stereoscopic 3D broadcasting system based on the depth information. Before the transmission, we encode the input 2D+depth video using x264, an open source H.264/AVC fast encoder to reduce the size of the data. At the receiver, we decode the transmitted bitstream in real time using a compute unified device architecture (CUDA) video decoder API on NVIDIA graphics processing unit (GPU). Then, we apply a fast view synthesis method that generates the virtual view using GPU. The proposed system can display the output video in both 2DTV and 3DTV. From the experiment, we verified that the proposed system can service the stereoscopic 3D contents in 24 frames per second at most.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.3
/
pp.1058-1070
/
2014
There are two major ways to implement depth estimation, multiple image depth estimation and single image depth estimation, respectively. The former has a high hardware cost because it uses multiple cameras but it has a simple software algorithm. Conversely, the latter has a low hardware cost but the software algorithm is complex. One of the recent trends in this field is to make a system compact, or even portable, and to simplify the optical elements to be attached to the conventional camera. In this paper, we present an implementation of depth estimation with a single image using a graphics processing unit (GPU) in a desktop PC, and achieve real-time application via our evolutional algorithm and parallel processing technique, employing a compute shader. The methods greatly accelerate the compute-intensive implementation of depth estimation with a single view image from 0.003 frames per second (fps) (implemented in MATLAB) to 53 fps, which is almost twice the real-time standard of 30 fps. In the previous literature, to the best of our knowledge, no paper discusses the optimization of depth estimation using a single image, and the frame rate of our final result is better than that of previous studies using multiple images, whose frame rate is about 20fps.
In this study, we design an optimized Graphics Processing Unit (GPU)-based GNSS signal processing technique with the goal of designing and implementing a GNSS Software Defined Receiver (SDR) that can operate in real time all-in-view mode under multi-constellation and multi-frequency signal environment. In the proposed structure the correlators of the existing GNSS SDR are processed by the GPU. We designed a memory structure and processing method that can minimize memory access bottlenecks and optimize the GPU memory resource distribution. The designed GNSS SDR can select and operate only the desired GNSS or desired satellite signals by user input. Also, parameters such as the number of quantization bits, sampling rate, and number of signal tracking arms can be selected. The computing capability of the designed GPU-based GNSS SDR was evaluated and it was confirmed that up to 2400 channels can be processed in real time. As a result, the GPU-based GNSS SDR has sufficient performance to operate in real-time all-in-view mode. In future studies, it will be used for more diverse GNSS signal processing and will be applied to multipath effect analysis using more tracking arms.
High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.
Modern GPU can execute mass parallel computation by exploiting many GPU core. GPGPU architecture, which is one of approaches exploiting outstanding computational resources on GPU, executes general-purpose applications as well as graphics applications, effectively. In this paper, we investigate the impact of memory-efficiency and performance according to number of CTAs(Cooperative Thread Array) on a SM(Streaming Multiprocessors), since the analysis of relation between number of CTA on a SM and them provides inspiration for researchers who study the GPU to improve the performance. Our simulation results show that almost benchmarks increasing the number of CTAs on a SM improve the performance. On the other hand, some benchmarks cannot provide performance improvement. This is because the number of CTAs generated from same kernel is a little or the number of CTAs executed simultaneously is not enough. To precisely classify the analysis of performance according to number of CTA on a SM, we also analyze the relations between performance and memory stall, dram stall due to the interconnect congestion, pipeline stall at the memory stage. We expect that our analysis results help the study to improve the parallelism and memory-efficiency on GPGPU architecture.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.373-376
/
2022
본 논문에서는 삼각형 메쉬 기반에서 옷감 시뮬레이션(Cloth simulation)에서 계산양이 큰 자기충돌(Self-collision) 처리를 GPU기반으로 가속화시킬 수 있는 방법에 대해 소개한다. CUDA기반으로 병렬 최적화하기 위해 본 논문에서는 1)재귀적으로 계산하여 충돌판정을 하는 BVH(Bounding volume hierarchy) 트리를 GPU기반에서 효율적으로 빌드, 업데이트, 트리 순회하는 방법을 제안하고, 2)삼각형 메쉬 기반에서는 중복되는 프리미티브(Primitive) 충돌검사를 최소화하기 위해 R-Triangle기법을 GPU에서 최적화 시키는 방법을 소개한다. 결과적으로 본 논문에서 제안하는 기법은 GPU 환경에서 옷감 시뮬레이션의 자기충돌과 객체충돌 처리를 빠르고 효율적으로 처리할 수 있도록 하였고, 다양한 장면에서 실험한 결과 모든 결과에서 빠른 시뮬레이션 결과를 얻을 수 있었다.
We propose a novel graphics processing unit (GPU) algorithm that can handle a large-scale 3D fast Fourier transform (i.e., 3D-FFT) problem whose data size is larger than the GPU's memory. A 1D FFT-based 3D-FFT computational approach is used to solve the limited device memory issue. Moreover, to reduce the communication overhead between the CPU and GPU, we propose a 3D data-transposition method that converts the target 1D vector into a contiguous memory layout and improves data transfer efficiency. The transposed data are communicated between the host and device memories efficiently through the pinned buffer and multiple streams. We apply our method to various large-scale benchmarks and compare its performance with the state-of-the-art multicore CPU FFT library (i.e., fastest Fourier transform in the West [FFTW]) and a prior GPU-based 3D-FFT algorithm. Our method achieves a higher performance (up to 2.89 times) than FFTW; it yields more performance gaps as the data size increases. The performance of the prior GPU algorithm decreases considerably in massive-scale problems, whereas our method's performance is stable.
Journal of Institute of Control, Robotics and Systems
/
v.15
no.8
/
pp.778-785
/
2009
This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.