Journal of the Korean Society for Aeronautical & Space Sciences
/
v.40
no.9
/
pp.818-826
/
2012
In this paper, the improvement methods of the computational efficiency of the conjunction screening algorithm, which calculates the closest distance between primary satellite and space objects are presented. First method is to use GPU(Graphics Processing Unit) that has high computing power and handles quickly large amounts of data. Second method is to use Apogee/Perigee filter which excludes non-threatening objects that have low probability of collision and/or minimum distance rather than that of thresh hold. Third method is to combine first method with second method. As a result, the computational efficiency has been improved 34 times and 3 times for the first method only and second method only, respectively. On the contrary, the computational efficiency has been dramatically improved 163 times when two kinds of methods are combined.
As General Purpose Graphics Processing Unit (GPGPU) recently plays an essential role in high-performance computing, several cloud service providers offer GPU service. Most cluster orchestration platforms in a cloud environment using containers allocate the integer number of GPU to jobs and do not allow a node shared with other jobs. In this case, resource utilization of a GPU node might be low if a job does not intensively require either many cores or large size of memory in GPU. GPU virtualization brings opportunities to realize kernel concurrency and share resources. However, performance may vary depending on characteristics of applications running concurrently and interference among them due to resource contention on a node. This paper proposes GPU container co-execution framework with multiple server creation and execution based on Kubernetes, container orchestration platform for measuring interference which may be occurred by sharing GPU resources. Performance changes according to scheduling policies were investigated by executing several jobs on GPU. The result shows that optimal scheduling is not possible only considering GPU memory and computing resource usage. Interference caused by co-execution among applications is measured using the framework.
We present a new use of common graphics hardware to perform a faster artificial neural network. And we examine the use of GPU enhances the time performance of the image processing system using neural network, In the case of parallel computation of multiple input sets, the vector-matrix products become matrix-matrix multiplications. As a result, we can fully utilize the parallelism of GPU. Sigmoid operation and bias term addition are also implemented using pixel shader on GPU. Our preliminary result shows a performance enhancement of about thirty times faster using ATI RADEON 9800 XT board.
Ray tracing is one of the classical global illumination methods to generate a photo-realistic rendering image with various lighting effects such as reflection and refraction. However, there are some restrictions on real-time applications because of its computation load. In order to overcome these limitations, many researches of the ray tracing based on GPU (Graphics Processing Unit) have been presented up to now. In this paper, we implement the ray tracing algorithm by J. Purcell and combine it with two methods in order to improve the rendering performance for interactive applications. First, intersection points of the primary ray are determined efficiently using rasterization on graphics hardware. We then construct the acceleration structure of 3D objects to improve the rendering performance. There are few researches on a detail analysis of improved performance by these considerations in ray tracing rendering. We compare the rendering system with environment mapping based on GPU and implement the wireless remote rendering system. This system is useful for interactive applications such as the realtime composition, augmented reality and virtual reality.
Kim, Jae-Young;Son, Dong-Koo;Kim, Jong-Myon;Jun, Heesung
Journal of the Korea Society of Computer and Information
/
v.18
no.9
/
pp.1-10
/
2013
In this paper, we implement the SIFT(Scale-Invariant Feature Transform) algorithm for feature point extraction using a many-core processor, and analyze the performance, area efficiency, and system area efficiency of the many-core processor. In addition, we demonstrate the potential of the proposed many-core processor by comparing the performance of the many-core processor with that of high-performance CPU and GPU(Graphics Processing Unit). Experimental results indicate that the accuracy result of the SIFT algorithm using the many-core processor was same as that of OpenCV. In addition, the many-core processor outperforms CPU and GPU in terms of execution time. Moreover, this paper proposed an optimal model of the SIFT algorithm on the many-core processor by analyzing energy efficiency and area efficiency for different octave sizes.
This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.
Journal of the Korea Society of Computer and Information
/
v.20
no.1
/
pp.1-10
/
2015
In this paper, we propose an efficient parallel implementation method of a widely used complex four-stage fire detection algorithm using a graphics processing unit (GPU) to improve the performance of the algorithm and analyze the performance of the parallel implementation method. In addition, we use seven different resolution videos (QVGA, VGA, SVGA, XGA, SXGA+, UXGA, QXGA) as inputs of the four-stage fire detection algorithm. Moreover, we compare the performance of the GPU-based approach with that of the CPU implementation for each different resolution video. Experimental results using five different fire videos with seven different resolutions indicate that the execution time of the proposed GPU implementation outperforms that of the CPU implementation in terms of execution time and takes a 25.11ms per frame for the UXGA resolution video, satisfying real-time processing (30 frames per second, 30fps) of the fire detection algorithm.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.3-4
/
2020
본 논문에서는 컴퓨팅 시스템에서 발생 할 수 있는, CPU와 GPU 간의 병목현상을 개선방안으로 통신 방식에 대해 비교 분석하였다. CPU와 GPU 간에 발생할 수 있는 병목현상의 해결방법으로, 두 구성 요소 간의 성능 구성 외의 통신방식을 개선 방법으로 PCIe와 NVLink를 비교하고, 성능 극대화 방안을 모색한다. NVLink 연결 방식의 통신 방식을 변경하였을 때 성능을 비교해 봄으로써 병목현상 해소 및 성능 향상에 우수한 결과를 낼 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.353-356
/
2023
본 논문에서는 GPU 기반으로 옷감을 찢는 데 필요한 동적 재메쉬 기법에 대해서 제안한다. 일반적으로 메쉬를 파괴(Fracture)하거나 찢는 시뮬레이션에서는 안정적인 동역학 계산하는데 있어서 동적 재 메쉬과정에 매우 중요하며 이 과정이 계산양이 가장 크다. 본 논문에서는 GPU 친화적인 동적 메쉬 알고리즘을 새롭게 제안함으로써 옷감 찢기 시뮬레이션을 실시간으로 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.10
/
pp.4948-4967
/
2017
On mobile devices, image sequences are widely used for multimedia applications such as computer vision, video enhancement, and augmented reality. However, the real-time processing of mobile devices is still a challenge because of constraints and demands for higher resolution images. Recently, heterogeneous computing methods that utilize both a central processing unit (CPU) and a graphics processing unit (GPU) have been researched to accelerate the image sequence processing. This paper deals with various optimizing techniques such as parallel processing by the CPU and GPU, distributed processing on the CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using the optimizing techniques both individually and combined, several heterogeneous computing structures were implemented and their effectiveness were analyzed. The experimental results show that the heterogeneous computing facilitates executions up to 3.5 times faster than CPU-only processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.