
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, Oct. 2017 4948
Copyright ⓒ2017 KSII

Analysis of Implementing Mobile
Heterogeneous Computing for Image

Sequence Processing

Aram BAEK1, Kangwoon LEE1, Jae-Gon KIM2, and Haechul CHOI1*
1 The Department of Multimedia Engineering,
Hanbat National University, Daejeon, Korea

[e-mail: aram98123@naver.com, kkawoons@naver.com, and choihc@hanbat.ac.kr]
2 School of Electronics, Telecommunication, and Computer Engineering,

Korea Aerospace University, Gyonggi-do, Korea
[e-mail: jgkim@kau.ac.kr]

*Corresponding author : Haechul CHOI

Received April 13, 2017; accepted June 17, 2017; published October 31, 2017

Abstract

On mobile devices, image sequences are widely used for multimedia applications such as
computer vision, video enhancement, and augmented reality. However, the real-time
processing of mobile devices is still a challenge because of constraints and demands for
higher resolution images. Recently, heterogeneous computing methods that utilize both a
central processing unit (CPU) and a graphics processing unit (GPU) have been researched
to accelerate the image sequence processing. This paper deals with various optimizing
techniques such as parallel processing by the CPU and GPU, distributed processing on the
CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using
the optimizing techniques both individually and combined, several heterogeneous
computing structures were implemented and their effectiveness were analyzed. The
experimental results show that the heterogeneous computing facilitates executions up to
3.5 times faster than CPU-only processing.

Keywords: Image processing, mobile platform, heterogeneous computing, embedded
GPU, GPGPU.

https://doi.org/10.3837/tiis.2017.10.014 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4949

1. Introduction

Mobile devices such as smartphones and tablets have been rapidly evolving with high
performance built-in cameras and remarkable high-speed communication, giving rise to a
variety of multimedia applications. Many of the multimedia applications such as computer
vision, video enhancement, and augmented reality utilize image sequences processing
technologies that refer to methods for the digital processing of a set of images. These
technologies require significant amounts of computation because image sequences have a
large amount of data. However, mobile platforms are still subject to constraints such as
battery capacity and computational power. The battery supplies a limited power that
remains a key factor in determination of computability. In addition, the mobile platform
lacks floating point units and random access memory (RAM), which significantly reduces
arithmetic accuracy and makes it difficult to handle high resolution video, respectively.

In an effort to enable better image sequence processing, general-purpose computation
on graphics processing units (GPGPU) [1] on the mobile platform has been actively
researched. A graphics processing unit (GPU) enables parallel processing with multiple
cores, which leads to significant improvement in energy consumption efficiency and
execution time speedup. In addition to the GPU, image sequence processing also needs a
central processing unit (CPU), through which the GPGPU performs, the operating system
runs, traditional serial tasks are conducted, and images to be stored or streamed are entered
as input for processing. A system with two or more dissimilar processors such as CPU and
GPU is referred to as a heterogeneous computing system. This approach further improves
image sequence processing on the mobile platform.

To implement image sequence processing based on heterogeneous computing on the
mobile platform, the following factors have to be considered: idle time between working
schedules of the processors, format conversion to enable operable data on the other
processor, available application memory supported by the mobile OS, data transmission
between processors, and balancing of the differing computational power of the processors.
On the basis of these considerations, this paper deals with several optimizing techniques
including task distribution on the CPU side, double buffering, frame buffer object (FBO),
and parallelization of the CPU and GPU. Applying the techniques both individually and
combined, various structures: CPU-only (CO), CPU-GPU sequential (CGS), CPU-GPU
parallel (CGP), distributed CPU-GPU sequential (DCGS), and distributed CPU-GPU
parallel (DCGP) image sequence processing structures, are implemented and analyzed. In
the CO structure, all jobs are conducted on the CPU. In the CGS structure, two kinds of
tasks are distributed to each processor and are conducted sequentially for a frame. The CGP
is an improvement on the CGS in which tasks are performed in parallel. For example, the
n-th and (n+1)-th frames are processed on the GPU and the CPU, respectively. In the
DCGS and the DCGP structures, the CPU task is divided into multiple modules and the
modules are performed in parallel on the CPU. Experiments conducted, in which these

4950 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

various configurable structures were evaluated according to their structural differences,
showed how the optimizing techniques affect the execution performance of various image
sequence processing algorithms in the mobile environment.

The remainder of this paper is organized as follows. Section 2 presents conventional
works related to image processing on mobile platforms. Sections 3 and 4 outlines
considerations for mobile heterogeneous computing and the optimizing techniques used to
accelerate image sequence processing with mobile heterogeneous computing, respectively.
Section 5 describes the various heterogeneous computing implementation methods.
Section 6 presents the experimental results obtained for the implementation methods.
Finally, Section 7 concludes this paper.

2. Related Work
Image sequences with high resolution and quality have a large amount of data on which
most image sequence processing algorithms carry out repetitive operations. These
repetitive operations can be efficiently accelerated by a GPU, which has a parallel
architecture consisting of multiple cores designed for handling multiple operations
simultaneously. One of the key factors in the design is the use of properties such as unified
shader, texture compression, and tiled architecture. The desktop platform has a variety of
vendor-specific solutions and flexibility such as compute unified device architecture [2],
Open Computing Language (OpenCL) [3], and OpenVIDIA [4] to facilitate use of the GPU
for general-purpose computation. On the other hand, the mobile platform is limited to
OpenCL and Open Graphics Library for Embedded Systems (OpenGL ES) [5]. OpenGL
ES is an application programming interface (API) for hardware-accelerated graphics

Table 1. Conventional mobile GPU based works for image processing and their performances
relative to CPU-only computing.

Reference Use Case API Source
Type

Image
Resolution Device Speedup

Ensor and Hall [7] Canny edge
detection

OpenGL
ES 2.0 Image 640 × 480 Nexus One, iPhone 4,

etc. 0.4x–2.4x

Singhal et al. [8] SURF, Image
processing

OpenGL
ES 2.0 Image 800 × 480

ARM Cortex A8 (1
GHz) and PowerVR
SGX 540 (200 MHz)

1.68x
–6.98x

Wang et al. [9] Visual object
removal OpenCL Video 512 × 384 Qualcomm Snapdragon

S4 -

Pulli et al. [10] Image processing OpenCV Image 10,000 iterations
on GPU Tegra 3 2.4x–14x

Leskela et al. [12] Image processing OpenCL Video 2016 × 1512
ARM Cortex A8 (550
MHz) and PowerVR
SGX 530 (110 MHz)

3.5x

Lopez et al. [13] Image recognition OpenGL
ES 2.0 Image

64 × 64, 512 ×
512,

1024 × 1024

ARM Cortex A8 (770
MHz) and PowerVR
SGX 535 (110 MHz)

2.5x

Cheng and Wang [14] Face recognition OpenGL
ES 2.0 Image

128 × 128, 512 ×
512,

1024 × 1024
Tegra 2 1.8x

Rister et al. [15] SIFT OpenGL
ES 2.0 Image 320 × 280 Qualcomm Snapdragon

S4, etc. 6.4x

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4951

rendering on mobile devices. OpenGL ES versions 1.0 and 1.1 are available for the
implementation of simple GPGPU techniques using a fixed rendering pipeline. Version 2.0
supports complicated GPGPU operations with programmable pipeline via the OpenGL
shader language (GLSL) [6]. Version 3.0 further expands the programmability of the
pipeline. By using GLSL, the fixed-function vertex and fragment operations of the graphics
pipeline are replaced with user-specified programs, also known as vertex shader and
fragment shader. These shaders provide flexible programmability, and support various
control-flow construct sets and complex data types.

Extensive research has recently been conducted on a mobile programmable embedded
GPU for image processing and computer vision. Table 1 shows various conventional
studies and their accelerations relative to the CPU-only structure. Ensor and Hall [7]
implemented a real-time Canny edge detection shader and obtained 2.4x faster total
execution time. Singhal et al [8] focused on optimized implementations of the cartoon-style
non-photorealistic rendering, stereo matching, and speedup robust feature (SURF)
algorithms using OpenGL ES 2.0. Their experimental results showed performance
improvements in the range 5.2x through 6.9x for the image processing algorithms and
1.68x for the SURF algorithm. Wang et al [9] studied a mapping object removal algorithm
using OpenCL. Their accelerations came from the partitioned GPU operations. Pulli et al
[10] introduced a variety of acceleration methods with the GPU version of the open source
computer vision library (OpenCV) [11]. Their results showed 2.4x to 14x faster total
execution time than the CPU version of OpenCV.

As evidenced from these conventional works, most existing works [7-10] focused on
mobile GPU acceleration. However, Leskela et al [12] proposed a heterogeneous
computing method in which they analyzed the frame timing and introduced an optimization
technique for work scheduling. Lopez et al [13] and Cheng et al [14] implemented image
and face recognition systems on mobile platforms. The systems, which were implemented
with CPU and GPU operations combined, exhibited 2x to 10x faster execution times for
face recognition algorithms. Rister et al [15] introduced several techniques, such as
partitioned heterogeneous computing and data compression for memory transfer, to speed
up the scale-invariant feature transform detection (SIFT) algorithm.

This paper takes into account both the CPU and the GPU on the mobile platform and
presents the factors that have to be considered when using both processors. On the basis of
these consideration, various optimizing techniques are implemented and their performance
are analyzed.

3. Considerations for Mobile Heterogeneous Computing

3.1 Mobile Heterogeneous Computing
Heterogeneous computing uses more than one kind of processor, such as a CPU and a GPU,
to combine particular processing capabilities for high computational performance. Use of a
GPU for general purposes can result in remarkable speed-ups on both mobile and desktop

4952 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

platforms, especially with image processing and computer vision algorithms. In such cases,
the CPU is employed for the OS, traditional serial tasks, and inputting image sequences
stored in main memory and transmitted over networks.

Nowadays, mobile devices are equipped with a system-on-a-chip mobile application
processor (AP). This mobile AP is typically configured with a CPU, GPU, image signal
processor, multi-format video codec, and various interface IPs; that is, a typical
heterogeneous computing system. The GPU and CPU are connected via the system bus,
which makes it possible to share the memory between them both. Through this memory
sharing, one processor can access data processed by the other processor using OpenGL ES
on mobile OS frameworks [16].

Several factors have to be considered in heterogeneous computing on mobile platforms.
The next subsections present these considerations in detail.

3.2 Idle Time
In a simple heterogeneous computing system, tasks are distributed to the CPU and GPU
and performed in sequential order. In this sequential system, the CPU and GPU may have
idle time when image sequences are processed because one processor can only start
working after the other processor has finished its task [17]. Specifically, the GPU waits for
an input image while the CPU is performing its task. Then, when the GPU is working on
the input image from the CPU, the CPU falls into an idle state. The idle time between the
tasks increases the total execution time in such a heterogeneous computing system.

3.3 Data Transmission and Format Conversion
In a mobile AP, the CPU and GPU share physical memory and the GPU obtains virtual
memory from this shared memory. The CPU and GPU can transmit data to each other
through the system bus. However, the system bus has a low memory bandwidth because of
power supply and physical hardware size limitations on mobile devices. In addition, image
sequences typically have a large amount of data and processing them is highly computation
intensive. Thus, transmission may take a relatively long time on a heterogeneous
computing.

Moreover, there is an additional process required to transmit data between the CPU and
GPU. The CPU and GPU handle data in different forms—pixels and vectors, respectively.
More specifically, the data format that can be processed by the GPU is texture, which
provides the information for rendering an image onscreen. These different data formats
make it impossible to provide direct access between CPU arrays and GPU textures. Thus,
one data format has to be converted into the other data format. The conversion instructions
are supported by the OpenGL ES framework.

Other format conversions may also be required for heterogeneous computing. Mobile
OSs are limited to available data formats that support direct conversion from pixel to
texture, called “texture conversion” in this paper. If data formats that do not support direct
texture conversion are utilized in CPU processing, the data have to be changed to an
intermediate format that provides direct texture conversion. This intermediate-format

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4953

conversion is conducted as a CPU task, followed by texture conversion as a GPU task.
As described above, the use of GPGPU requires data transmission and format

conversion. To determine the effect of these requirements, the times required were
measured for a case in which image sequences were displayed through a GPU. The results
are shown in Table 2. In this experiment, bitstreams coded using H.264/AVC [18] were
given as inputs, and test sequences with three spatial resolutions, 500 frames, and 50 Hz
were original or down-sampled versions of BascketballDrive—a common test sequence in
the standardization of high efficiency video coding (HEVC/H.265) [19]. The mobile
platform comprised an ARM v7-based dual-core CPU (1.3 GHz) and a PowerVR SGX
543MP3 triple-core GPU (325 MHz). As shown in the table, the transmission and
conversion times are considerable and constitute higher percentages for higher image
resolutions. Therefore, heterogeneous computing should be implemented in manner such
that transmission frequency and the amount of data transmitted between the CPU and GPU
are minimized.

3.4 Low Memory
The small size of the mobile AP necessitates physical constraints on the amount of memory
relative to that of the desktop platform. In addition, mobile applications are allowed only
very limited memory because a mobile OS has to manage multiple applications at the same
time. When the amount of memory occupied by an application exceeds the maximally
available capacity, the mobile OS forcibly terminates the application. Consequently, for
high resolution images, memory usage should be optimized within an available memory
capacity range.

3.5 Computational Power
Because the power of the mobile AP is supplied from a battery, there are physical
limitations to the power efficiency of the processors and other hardware. Thus, the mobile
platform has a smaller number of cores, a lower CPU clock frequency, and a smaller
number of shader units in the GPU than the desktop platform. This is the reason why the
CPU and GPU of a mobile platform perform significantly lower than their desktop
counterparts.

Image sequence processing algorithms typically contain many operation commands for
a large amount of data, which incurs a significant overhead on the mobile platform.

Table 2. Format conversion and data transmission times on mobile CPU-GPU sequential structure.

Resolutions

Image sequence display using GPU

(a): Intermediate-format
conversion time (s)

(b): Transmission + Texture
conversion time (s)

(a) + (b):
% of (c) (c): Total execution time (s)

854 × 480 1.58 5.2 58.24% 11.65

1280 × 720 2.16 10.93 62.59% 20.92

1920 × 1080 3.0 23.87 71.78% 37.43

4954 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

Moreover, the CPU and GPU have differences in computability and processing time. These
differences are likely to cause idle states in the processors when multiple frames are
processed. Thus, an understanding of the overall performance of the mobile AP and
maintaining a balance between the task loads of the processors in the implementation of
image sequence processing algorithms are essential.

4. Mobile Heterogeneous Computing for Image Sequence Processing
On the basis of the considerations discussed in the previous section, this section presents
several optimizing techniques for efficient implementation of mobile heterogeneous
computing.

4.1 Parallelization of CPU and GPU
The CPU and GPU of a mobile platform can execute operations in parallel. In the case of
the CGS structure, the GPU starts accepting the n-th frame after it is processed on the CPU.
Thus, the GPU may fall into an idle state while the CPU is processing a frame. On the other
hand, in the case of the CGP structure, the GPU can process the n-th frame while the CPU
is processing the (n+1)-th frame. This kind of parallelization can improve the operational
efficiency of both the CPU and the GPU because they can simultaneously perform their
instructions for image frames. Thus, the parallelism can decrease the waiting time and
reduce significantly the total execution time.

For parallelization of the CPU and GPU, the CPU-GPU pipeline structure should be
retained because the CPU and GPU are usually not allowed to handle the same frame at the
same time, and the CPU and GPU tasks should be independently processable on each
processor. The parallelization can be implemented as the following workflow using thread
level parallelism (TLP). The execution of a mobile application starts on the main thread by
the CPU because a mobile OS gains access to the application stored in the main memory
via CPU processing; the main thread then calls the sub-thread for the GPU task. In this
parallelization technique, independent instruction streams of the CPU and GPU tasks are
processed simultaneously on the main thread and sub-threads, respectively.

The CPU task itself can also be processed in parallel, for which the CPU task is divided
into modules that are distributed to threads—called task distribution. The CPU task
typically includes independently processable modules such as the decoding and the
intermediate-format conversion when a coded bitstream of an image sequence is given
from the main memory as input. These modules can be distributed into separate threads in
such a manner that the decoding operation is on the main thread and the
intermediate-format conversion is on another sub-thread. These threads can operate in
parallel using TLP. In this case, the decoding and the conversion modules should also
maintain a pipeline structure, as in CPU-GPU parallelization.

4.2 Double Buffering
As described in Section 3, the processing times of CPU and GPU tasks differ according to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4955

the processing powers of the processors and the amount of data contained in each frame.
These differences can cause critical problems such as data loss and meaningless repetitions
of the same processing if the tasks are operating in parallel [20]. For example, if the
processing time of a CPU task is considerably less than that of the GPU task, the
cumulative time difference can cause the CPU processed data to be dropped, much like the
effect of buffer overflow. Meaningless repetitions can occur in the opposite case, buffer
underflow. If the GPU task is finished much earlier than the CPU task, the same frame can
be fed again to the GPU task. These problems were observed in experiments conducted, the
results of which are shown in Table 3; the experimental conditions were the same as in
Table 2, except for the image processing algorithms implemented. In these experiments,
all test sequences had 500 frames and CPU and GPU tasks included Gray-scaling and Sobel
edge detection, respectively. The sequential structure processed exactly 500 frames on the
GPU without data loss or repetition problems. However, the parallel structure had fewer
frames processed on the GPU for test sequences with 854×480 and 1280×720 pixels, which
shows that data loss occurred. For test sequences with 1920×1080 pixels, the GPU task
processed 43 more than the original frames. This reveals that 43 meaningless repetitions
happened because the CPU task took more time for the relatively larger amount of image
data. These problems, caused by the parallelism, reduce the accuracy and efficiency of the
image sequence processing.

These problems can be resolved by inserting a buffer between the CPU and the GPU
and checking the buffer state. However, as described in Section 3.3, the data transmission
time associated with buffer read and write is considerable on a mobile platform. When one
processor is transmitting data to the buffer, the other should wait to access the buffer during
the transmission time. A suitable solution to all of these problems is double buffering
method. Fig. 1 shows double buffering control using two First-In First-Out buffers, which
enables one thread to occupy one buffer when the other thread is accessing the other buffer.
Thus, the parallelized tasks can read or write image data alternately from or to the buffers.
In this simultaneous access manner, the double buffering reduces the waiting time to access
the buffer and solves parallelization problems such as the data loss and meaningless

Table 3. Data loss and meaningless repetitions in parallel processing of the CPU and GPU
tasks—Gray-scaling and Sobel edge detection, respectively.

Resolutions
Heterogeneous

Structure
Types

Gray-scaling on CPU + Sobel edge detection on GPU

Number of GPU processed frames Total execution time (s)

854 × 480
Sequential 500 15.0

Parallel 411 8.2

1280 × 720
Sequential 500 24.8

Parallel 374 14.9

1920 × 1080
Sequential 500 47.1

Parallel 542 35.5

4956 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

repetitions.
Another consideration for the buffer is a lack of RAM on the mobile platform. As

described in Section 3.4, the mobile OS may forcibly terminate any application exceeding
the memory capacity limit. Thus, in the implementation of mobile heterogeneous
computing, the buffer size should be carefully determined considering the available
memory capacity and image resolution.

4.3 Data Transmission Minimization
As described in Section 3.3, the use of a mobile GPU for image sequence acceleration
requires data transmission between the CPU and GPU, which is a major cause of
performance degradation in mobile heterogeneous computing. The transmission time
increases proportionally with the size of image data, such as spatial and temporal
resolutions of image sequences. Thus, it could be reduced by methods that compress image
data [10, 15, 21].

The transmission time also increases, especially in multiple serial processing, where
operations are applied to the result of the previous operation. This sort of multiple serial
processing is included in many image sequence processing algorithms such as Sobel and
Canny edge operators. In these algorithms, the results of a GPU task need to be transmitted
to a CPU task and then returned as input for the next operation. This procedure requires
textures that include many instructions to access the CPU image array, which makes
transmission occur frequently. To minimize this kind of transmission, a competitive
solution is the ping-pong technique using FBO [22]. The mobile GPU transmits the image
data processed by GLSL operations to a frame buffer for output on a device screen. At this
point, the processed image data in the frame buffer can be copied and stored in the FBO of
the GPU memory. When this is done, the data in the FBO can be reused for the next
processing stage on the GPU without being displayed onscreen by employing the
Off-Screen Rendering command of OpenGL ES. Consequently, FBO enables reuse of
GPU results, preventing the results from being passed again through the CPU, which
minimizes transmission time.

Fig. 1. Double buffer for parallel processing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4957

Table 5. Performance comparison of mobile CPU and mobile GPU for various image processing
algorithms.

Algorithms Resolutions
Number of processed frames (fps)

Speedup on CPU on GPU

Gray-scaling

854 × 480 67 33 x0.49

1280 × 720 34 21 x0.60

1920 × 1080 17 14 x0.80

Gaussian
blurring

854 × 480 12 33 x2.75

1280 × 720 6 21 x3.50

1920 × 1080 3 14 x4.60

Sobel edge
detection

854 × 480 16 33 x2.00

1280 × 720 8 21 x2.60

1920 × 1080 4 14 x3.50

Dilation

854 × 480 13 33 x2.50

1280 × 720 6 21 x3.50

1920 × 1080 3 14 x4.60

Bilateral
filter

854 × 480 20 33 x1.65

1280 × 720 9 21 x2.30

1920 × 1080 4 14 x3.50

To ascertain how much transmission time can be minimized using FBO, experiments
were conducted for structures with or without FBO; the structure without FBO repeatedly
passes intermediate results through the CPU, whereas the structure with FBO does not. In
the experiments, the experimental conditions were the same as those in Table 2. As shown
in Table 4, the structure with FBO achieved a higher acceleration with average 2.4x
speedup over that without FBO. This acceleration resulted from lower transmission time
and higher GPU usage efficiency.

4.4 Task Assignment
It has been reported that GPGPU is suitable for image processing. To verify this claim,
various image processing algorithms were simulated on the mobile CPU and GPU,
respectively, under
the same experimental conditions as those in Table 2. Table 5 shows that most algorithms

Table 4. Data transmission speedup using the frame buffer object on the CPU-GPU sequential
image processing structure for Canny edge detection algorithm.

Algorithms Resolutions
Total execution time (s)

Speedup
Structure without FBO Structure with FBO

Canny
Edge

Detection

854 × 480 39.84 16.84 x2.37
1280 × 720 79.71 32.68 x2.44

1920 × 1080 165.03 69.32 x2.38

4958 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

are appropriate for GPU operations, but Gray-scaling is more beneficial for CPU
operations. These results confirm that image processing algorithms do not always have to
be implemented on the GPU. This is because data transmission is a key factor in deciding
whether a workload is suitable for CPU or GPU. In general, compute-intensive algorithms
can benefit more from the GPU, while memory intensive applications are better suited to
the CPU. Thus, when implementing image sequence processing algorithms for mobile
heterogeneous computing, the algorithms should be modularized considering their
characteristics and the modules should be distributed appropriately to each processor.

5. Implementation Structures of Heterogeneous Computing System
To analyze the effectiveness of various heterogeneous computing structures, we
implemented four structures, CGS, CGP, DCGS, and DCGP, while taking into account the
considerations discussed in Section 3, and applying selectively the methods described in
Section 4. The CPU-only structure was also implemented as an anchor for comparisons. In
those implementations, all heterogeneous computing structures had FBO to minimize the
data transmission time. To accept the inputs of image sequences from H.264/AVC coded
bitstreams stored in memory, all of the structures contained an H.264 decoding module that
performed on the CPU.

5.1 CPU-only Processing (CO)
The CO structure is an easy and common implementation on the mobile platform. As
shown in Fig. 2(a), all modules perform the image processing sequentially as a CPU task,
and the GPU is used only for displaying the output on a screen. To obtain images from
compressed bitstreams, this structure performs H.264 decoding. Intermediate-format
conversion is not always required in implementations of image sequence processing, but is
necessary when using image processing libraries such as OpenCV. The CO structure could
be suitable in cases where image sequence processing algorithms have a small number of
commands.

5.2 CPU-GPU Sequential Processing (CGS)
CGS is a base structure that employs a GPU to accelerate image sequence processing. As
shown in Fig. 2(b), the CPU tasks include decoding and intermediate-format conversion,
and the GPU tasks include texture conversion, image processing, and display. More
specifically, on the CPU, decoding is first performed, followed by intermediate-format
conversion from pixel data to texture convertible format. On the GPU, texture data are
obtained by texture conversion, and then image processing is performed.

In the CGS structure, the operations concentrated in the CPU in the CO structure are
distributed between the CPU and the GPU. This distribution can significantly reduce the
image sequence processing time, especially for complex image processing algorithms. On
the other hand, the idle time between the tasks still occupies a significant proportion of the
execution time in the sequential structure.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4959

(a) :

(b) :

(c) :

(d) :

(e) :

Fig. 2. Outlines of image sequence processing structures: (a) CPU-Only Processing, (b) CPU-GPU

Sequential Processing, (c) Distributed CPU-GPU Sequential Processing, (d) CPU-GPU Parallel
Processing, and (e) Distributed CPU-GPU Parallel Processing.

4960 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

5.3 Distributed CPU-GPU Sequential Processing
In the CGS structure, the CPU burden rises significantly as the image resolution is higher.
To reduce the CPU burden, the DCGS structure distributes and parallelizes the decoding
and the intermediate-format conversion modules of the CPU task using a multithreaded
pipeline, as shown in Fig. 2(c). This parallelization of the pipelined modules may generate
data loss, meaningless repetitions for the same frame, and waiting time to access the buffer.
To solve these problems, the CGS structure employs double buffering between a main
thread for decoding and a sub-thread for intermediate-format conversion.

5.4 CPU-GPU Parallel Processing
The idle time between the CPU and the GPU can be reduced via processor parallelization
of their tasks and double buffering between them. As shown in Fig. 2(d), the parallelization
is implemented by utilizing a main thread for the CPU task and a sub-thread for the GPU
task. On the CPU, the main thread performs decoding and intermediate-format conversion
sequentially, and then stores the results into the double buffer. On the GPU, the sub-thread
converts the texture convertible frame data to texture, performs image processing, and then
displays the output.

5.5 Distributed CPU-GPU Parallel Processing
The DCGP structure applies task distribution, parallelization, and double buffering to the
CPU tasks of the CGP structure to improve the sequential processing on the CPU of the
CGP. Thus, all of the decoding of the CPU tasks, the intermediate-format conversion of the
CPU tasks, and the GPU tasks are performed in parallel by using three threads, as shown in
Fig. 2(e). More specifically, a main thread first performs the decoding and stores the
decoded frames in the double-buffer located between the decoding and the
intermediate-format conversion. Next, a sub-thread converts the decoded frames in the
double-buffer to texture convertible format, and then stores the results in the other
double-buffer located between the CPU and the GPU tasks. Third, a GPU thread conducts
texture conversion and image processing. Finally, the output is displayed.

6. Experimental Results
To analyze the benefits of the parallel and distributed mobile heterogeneous computing
system, we implemented the five image processing structures described in Section 5: CO,
CGS, DCGS, CGP, and DCGP. The CGS, DCGS, CGP, and DCGP structures are based on
heterogeneous computing, whereas CO utilizes only the CPU. On top of the structures, we
also implemented a variety of commonly used image processing algorithms including
Gray-scaling, Gaussian blurring, Bilateral filter, Sobel edge detection, Canny edge
detection, Dilation, and Erosion. The mobile platform comprised an ARM v7-based 1.3
GHz Dual-core CPU, a PowerVR SGX 543MP3 triple-core GPU, and 1 GB RAM. To
employ the GPGPU, OpenGL ES 2.0 was used. Bitstreams coded using H.264/AVC were
given as inputs, and test sequences with three spatial resolutions, 500 frames, and 50 Hz

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4961

were original or down-sampled versions of BascketballDrive. Fig. 3 shows examples of
each image processing result on the mobile device. The performances of all the structures
are listed in Tables 6 and 7, where the speedup is the ratio of the CO structure to a
particular heterogeneous structure in terms of the total execution time. The speedup implies
how much faster the particular heterogeneous computing structure is than the CO structure.
Moreover, the running times are presented separately according to the CPU and the GPU
tasks.

6.1 CO vs. Heterogeneous Computing
First, the use of the GPGPU is evaluated. As shown in Tables 6 and 7, the structures using
GPGPU, such as CGS, DCGS, CGP, and DCGP, achieved average CPU execution time
reductions of 75.9%, 81.2%, 70.3%, and 70.2% compared to CO, respectively. These
substantially reduced CPU burdens affecting directly the total execution times, which were
also reduced on average by 58%, 64%, 70%, and 70%, respectively. The total execution
time of the heterogeneous implementations contains the data transmission time and the
texture conversion time, whereas these times are not required in the CO structure.

(a) (b)

(d) (c)

(e) (f)

Fig. 3. Examples of image processing algorithms. (a) original image, (b) Gaussian blurring, (c)
Sobel edge detection, (d) Canny edge detection, (e) Gray-scaling and Dilation, and (f) Gray-scaling

and Erosion.

4962 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

Table 6. Execution time and speedup ratio comparison of image processing algorithms on the
homogeneous computing implementations (OC, CGS, and DCGS).

Algorithms Spatial
resolution

Execution Time (s)

OC CGS DCGS

CPU CPU GPU Total Speedup CPU GPU Total Speedup

Gray-scaling
854 x 480 10.21 7.58 4.17 11.75 0.87x 6.39 4.93 11.33 0.9x

1280 x 720 19.96 15.74 5.12 20.86 0.96x 12.36 7.94 20.3 0.98x
1920 x 1080 35.95 34.67 8.95 43.61 0.82x 24.39 11.52 35.91 1.0x

Gaussian
blurring

854 x 480 19.94 7.23 7.88 15.12 1.32x 6.40 6.27 12.67 1.57x
1280 x 720 29.91 15.73 9.33 25.06 1.19x 12.24 8.19 20.43 1.46x

1920 x 1080 58.16 34.62 13.76 48.38 1.2x 24.19 12.64 36.82 1.58x

Bilateral
filter

854 x 480 30.83 7.24 8.06 15.30 2.01x 6.18 6.98 13.16 2.34x
1280 x 720 62.89 15.94 9.04 24.97 2.52x 12.46 7.92 20.38 3.09x

1920 x 1080 122.38 34.47 10.48 44.95 2.72x 24.16 11.37 35.53 3.44x

Sobel edge
detection

854 x 480 19.98 7.32 7.70 15.02 1.33x 6.54 5.80 12.33 1.62x
1280 x 720 39.94 15.71 9.30 25.01 1.60x 12.10 8.12 20.21 1.98x

1920 x 1080 79.66 34.71 12.72 47.43 1.68x 24.02 12.29 36.31 2.19x

Canny edge
detection

854 x 480 54.03 7.28 9.56 16.84 3.21x 5.75 9.44 15.19 3.56x
1280 x 720 103.94 15.63 17.05 32.68 3.18x 12.00 17.06 29.06 3.58x

1920 x 1080 211.25 35.14 34.18 69.32 3.05x 26.76 34.41 61.18 3.45x

Dilation
854 x 480 49.91 7.25 8.05 15.30 3.26x 6.05 8.50 14.56 3.43x

1280 x 720 99.59 15.78 12.55 28.33 3.51x 12.26 11.82 24.07 4.14x
1920 x 1080 207.59 34.84 24.13 58.97 3.52x 26.26 23.23 49.49 4.19x

Erosion
854 x 480 50.01 7.21 8.00 15.21 3.29x 6.03 8.32 14.36 3.48x

1280 x 720 100.34 15.78 12.57 28.34 3.54x 12.23 11.91 24.14 4.16x
1920 x 1080 211.52 35.04 24.14 59.18 3.57x 26.17 23.19 49.37 4.28x

Average
854 x 480 33.56 7.30 7.63 14.93 2.25x 6.19 7.18 13.37 2.51x

1280 x 720 65.22 15.76 10.71 26.47 2.46x 12.23 10.42 22.66 2.88x
1920 x 1080 132.36 34.78 18.34 53.12 2.49x 25.14 18.38 43.51 3.04x

Table 7. Execution time and speedup ratio comparison of image processing algorithms on the

heterogeneous computing implementations (CGP and DCGP).

Algorithms Spatial
resolution

Execution Time (s)

CGP DCGP

CPU GPU Total Speedup CPU GPU Total Speedup

Gray-scaling
854 x 480 9.85 10.10 10.10 1.01x 9.89 10.12 10.12 1.01x

1280 x 720 19.47 19.94 19.94 1.0x 19.41 19.84 19.84 1.01x
1920 x 1080 33.81 33.82 33.82 1.06x 33.26 33.26 33.26 1.08x

Gaussian
blurring

854 x 480 9.90 10.12 10.12 1.97x 9.90 10.12 10.12 1.97x
1280 x 720 19.36 19.88 19.88 1.5x 19.45 19.90 19.90 1.50x
1920 x 1080 34.14 34.19 34.19 1.7x 33.81 34.49 34.49 1.69x

Bilateral
filter

854 x 480 9.88 10.13 10.13 3.04x 9.94 10.14 10.14 3.04x
1280 x 720 19.45 19.96 19.96 3.15x 19.27 19.74 19.74 3.19x
1920 x 1080 33.69 33.70 33.70 3.63x 33.43 33.42 33.42 3.66x

Sobel edge
detection

854 x 480 9.91 10.14 10.14 1.97x 10.11 10.32 10.32 1.94x
1280 x 720 19.39 19.92 19.92 2.01x 19.37 19.82 19.82 2.02x
1920 x 1080 34.14 34.17 34.17 2.33x 33.63 34.27 34.27 2.32x

Canny edge
detection

854 x 480 12.15 12.53 12.53 4.31x 12.11 12.48 12.48 4.33x
1280 x 720 21.88 22.60 22.60 4.6x 22.12 22.78 22.78 4.56x
1920 x 1080 46.00 47.63 47.63 4.43x 46.31 47.85 47.85 4.41x

Dilation
854 x 480 9.99 10.28 10.28 4.85x 10.19 10.45 10.45 4.78x

1280 x 720 19.42 19.98 19.98 4.98x 19.72 20.18 20.18 4.94x
1920 x 1080 39.03 40.16 40.16 5.17x 39.56 40.72 40.72 5.10x

Erosion
854 x 480 12.02 10.28 10.28 4.86x 10.13 10.40 10.40 4.81x

1280 x 720 19.41 19.94 19.94 5.03x 19.60 20.10 20.10 4.99x
1920 x 1080 39.21 40.40 40.40 5.24x 39.77 40.84 40.84 5.18x

Average
854 x 480 10.24 10.51 10.51 3.19x 10.33 10.58 10.58 3.17x

1280 x 720 19.77 20.32 20.32 3.21x 19.85 20.34 20.34 3.21x
1920 x 1080 37.15 37.73 37.73 3.51x 37.11 37.84 37.84 3.50x

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4963

Nevertheless, the heterogeneous computing structures achieved significant speedups. It can
also be seen that the compute-intensive algorithms Canny, Dilation, and Erosion had higher
speedups of 2.0x through 5.2x than the simple algorithms Gray-scaling and Gaussian
Blurring, which had only 1.3x through 1.9x. In the same fashion, test sequences with higher
spatial resolutions obtained higher acceleration ratios. Another observation is that the
Gray-scaling algorithm was accelerated in the CGP and DCGP structures. As described in
Section 4.4, this algorithm is suitable for CPU operations. Thus, the CGS and DCGS
structures have longer execution times than the CO structure. However, as the CGP and
DCGP structures perform image processing in parallel with other modules such as
decoding and intermediate-format conversion, they achieved an overall total execution
time reduction.

6.2 OC vs. CGS
CGS executes CPU and GPU tasks sequentially for a frame, and the image processing
algorithms are executed on the GPU, as shown in Fig. 4(a). As listed in Table 6, for all the
image processing algorithms except Gray-scaling, CGS showed faster execution times than
CO as a result of high GPU throughput. These experimental results verify that use of the
GPU for general purposes is feasible, especially for complex image processing algorithms.
On the other hand, CGS ran slower by 2 to 18% than CO for Gray-scaling. Because
Gray-scaling has simple and light computations, the acceleration achieved using the GPU
is not enough to overcome the overhead caused by data transmission between the
processors and format conversion that are necessary to use the GPU.

6.3 CGS vs. DCGS
As shown in Table 6, DCGS obtained on average 2.51x, 2.88x, and 3.04x speedup of the
total execution time relative to CO for test sequences with 854×480, 1280×720, and
1920×1080 pixels, respectively. The performance of DCGS is slightly higher than that of
CGS, which achieved on average 2.25x, 2.46x, and 2.49x speedup. It can be seen that the
performance improvement of DCGS relative to CGS is higher for test sequences with
higher spatial resolution. As a larger amount of computing is required, DCGS can reduce
the execution time more significantly. The reason for the acceleration includes the fact that
the processing time for decoding and intermediate-format conversion on the CPU can be
reduced via distribution and parallelization, as illustrated in Fig. 4(b). As shown in the
figure, Thread-0 for the decoding and Thread-1 for the intermediate-formant conversion
perform in parallel. Thread-0 has no idle time when the buffer is not full. However,
Thread-1 has latency until the Thread-2 has finished the GPU task because the CPU and
GPU tasks operate sequentially. Therefore, as shown in Table 6, the GPU execution time
of DCGS remained approximately unchanged relative to that of CGS.

6.4 CGS vs. CGP
The main difference between CGP and CGS is the parallelization of the CPU and GPU
tasks. This parallelization can have Thread-0 conduct its task incessantly, as in Fig. 4(c).

4964 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

(a) :

(b) :

(c) :

(d) :

Fig. 4. Examples of processing procedure of each implemented structure (a) the CGS structure, (b)
the DCGS structure, (c) the CGP structure, and (d) the DCGP structure.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4965

As expected, CGP achieved an average reduction of more than 12% in the running time
compared to CGS, as shown in Tables 6 and 7. The result proves that CGP works well
with reduced idle time between the CPU and GPU as a result of parallelization. To decrease
further the idle time, CGP should have similar processing times between the CPU and GPU
tasks. The times can be brought closer by using task distribution and load balancing
between the tasks.

6.5 CGP vs. DCGP
In DCGP, the decoding, intermediate-format conversion, and GPU tasks operate in parallel
using three threads and two of the double-buffers, as shown in Fig. 4(d). As shown in the
aforementioned experimental results, the distribution of the CPU task in DCGS reduced the
idle time between the CPU modules compared to CGS, and the parallelization of the CPU
and GPU tasks in CGP also reduced the idle time between the two processors compared to
CGS. Therefore, DCGP could reasonably be expected to have a fast execution time equal to
the sum of the time gains obtained in the DCGS and CGP structures. However, DCGP had
approximately the same performance as CGP without the execution time gain of the
distributed and parallel processing of the CPU modules, as shown in Table 7. This
unexpected result occurred for the following reasons: data transmission between the CPU
and GPU of the n-th frame takes a longer time than CPU processing of Thread-0 and
Thread-1 for the (n+1)-th frame, which results in idle time on the CPU side when the buffer
for decoded frames is full. Therefore, in the DCGP structure, if the data transmission is
faster than the CPU task processing, DCGP can surpass CGP.

7. Conclusion
Image sequence processing on a mobile platform can be accelerated by increasing the AP
utilization efficiency via heterogeneous computing. For high utilization efficiency, this
paper dealt with optimization techniques including task distribution on the CPU side,
double buffering, FBO, and parallelization of the CPU and GPU. The experimental results
obtained verified that the optimization techniques resulted in significantly improved image
sequence processing times in the various heterogeneous computing structures. This kind of
acceleration can facilitate real-time multimedia applications such as video enhancement,
video coding, augmented reality, and computer vision on mobile devices.

Acknowledgments
This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIP) (B0126-15-1013,
Development of generation and consumption of jigsaw-liked ultra-wide viewing spacial
Media).

4966 Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

References
[1] General Purpose GPU Programming (GPGPU). http://www.gpgpu.org/
[2] NVIDIA Corporation, Compute Unified Device Arhictecture (CUDA).

https://developer.nvidia.com/cuda-zone
[3] Khronos Group, Open Computing Language. https://www.khronos.org/opencl/
[4] J. Fung, S. Mann, and C. Aimone, “OpenVIDIA : Parallel GPU computer vision,” in Proc. of

ACM International Conference on Multimedia, pp. 849-852, November, 2005.
Article (CrossRef Link).

[5] Khronos Group, Open Graphics Library for Embedded Systems.
https://www.khronos.org/opengles/

[6] R. J. Rost, OpenGL Shading Language, 2ed, Addision-Wesley Professional, 2006.
[7] A. Ensor and S. Hall, “GPU-based image analysis on mobile devices,” in Proc. of International

Conference on Image and Vision Computing, New Zealand (IVCNZ), 2011.
Article (CrossRef Link).

[8] N. Singhal, J. W. Yoo, H. Y. Choi and I. K. Park, “Implementation and optimization of image
processing algorithms on embedded GPU,” IEICE Transactions on Information and Systems,
vol. 95, no. 5, pp. 1475-1484, 2012. Article (CrossRef Link).

[9] G. Wang et al., “Accelerating computer vision algorithms using OpenCL framework on the
mobile GPU–A case study,” in Proc. of IEEE international Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 2629-2634, 2013. Article (CrossRef Link).

[10] K. Pulli et al., “Real-time computer vision with OpenCV,” Commun. ACM, vol. 55, no. 6, pp.
61-69, June 2012. Article (CrossRef Link).

[11] Open Source Computer Vision (OpenCV). http://opencv.org/
[12] J. Leskela, J. Nikula, and M. Salmela, “OpenCL embedded profile prototype in mobile device,”

in Proc. of IEEE Workshop on Signal Processing Systems (SiPS), pp. 279-284, 2009.
Article (CrossRef Link).

[13] M. B. Lopez et al, “Accelerating image recognition on mobile devices using GPGPU,” in Proc.
of SPIE, Parallel Processing for Image Applications, vol. 7872, pp. 78720R-78720R-10, 2011.
Article (CrossRef Link).

[14] K. Cheng and Y. Wang. “Using mobile GPU for general-purpose computing—A case study of
face recognition on smartphones,” in Proc. of International Symposium on VLSI Design,
Automation and Test (VLSI-DAT), pp. 1-4, 2011. Article (CrossRef Link).

[15] B. Rister et al, “A fast and efficient SIFT detector using the mobile GPU,” in Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.
2674-2679, 2013. Article (CrossRef Link).

[16] Apple Inc, iOS Developer Library, OpenGL ES Programming Guide for iOS, 2016.
[17] A. Baek, K. Lee, and H. Choi, “CPU and GPU parallel processing for mobile augmented

reality,” in Proc. of IEEE International Congress on Image and Signal Processing (CISP), vol.
01, pp. 133-137, 2013. Article (CrossRef Link).

[18] ITU-T and ISO/IEC JTC 1, Advanced Video Coding for Generic Audiovisual Services, ITU-T
Rec. H.264 and ISO/IEC 14496-10 (AVC), version 1, 2003, version 2, 2004, versions 3, 4,
2005, versions 5, 6, 2006, versions 7, 8, 2007, versions 9, 10, 11, 2009, versions 12, 13, 2010,
versions 14, 15, 2011, version 16, 2012.

[19] Joint Collaborative Team on Video Coding (JCT-VC), “High Efficiency Video Coding
(HEVC) text specification draft 10(for FDIS & Consent),” JCTVC-L1003, Geneva, January
2013.

https://doi.org/10.1145/1101149.1101334
https://arxiv.org/abs/1112.3110
https://doi.org/10.1587/transinf.E95.D.1475
https://doi.org/10.1109/icassp.2013.6638132
https://doi.org/10.1145/2184319.2184337
https://doi.org/10.1109/sips.2009.5336267
https://doi.org/10.1117/12.872860
http://ieeexplore.ieee.org/document/5783575/
https://doi.org/10.1109/icassp.2013.6638141
https://doi.org/10.1109/cisp.2013.6743972

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 10, October 2017 4967

[20] A. Baek, K. Lee, and H. Choi, “Speed-up image processing on mobile CPU and GPU,” in Proc.
of IEEE Asia Pacific Conference on Multimedia and Broadcasting (APMediaCast), pp. 79-81,
April, 2015. Article (CrossRef Link).

[21] T. Akenine-Moller and J. Strom, “Graphics processing units for handhelds,” in Proc. of the
IEEE, vol. 96, Issue. 5, pp. 779-789, May 2008. Article (CrossRef Link).

[22] Dominik Göddeke: GPGPU Basic Math Tutorial, Fachbereich Mathematik, Universität
Dortmund, Ergebnisberichte des Instituts für Angewandte Mathematik, Nummer 300,
November, 2005. http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/tutorial.html

Aram Baek received B.S. and M.S. degrees from Hanbat National University,
Daejeon, Korea, in 2012 and 2014, respectively, from the department of multimedia
engineering. Currently, he is working toward Ph.D. degree in the department of
multimedia engineering in Hanbat National University. His research interests include
video coding, parallel processing, and multimedia processing.

Kangwoon Lee received B.S. and M.S. degrees from Hanbat National University,
Daejeon, Korea, in 2012 and 2015, respectively, in the department of multimedia
engineering. His research interests include mobile computing, GPU computing, and
multimedia network.

Jae-Gon Kim received his B.S. in electronics engineering from Kyungpook
National University, Daegu, Rep. of Korea, in 1990, and his M.S. and Ph.D. in
electrical engineering from the Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Rep. of Korea, in 1992 and 2005, respectively. From 1992 to
2007, he was with ETRI, Daejeon, Rep. of Korea, where he was involved in the
development of digital broadcasting media services, MPEG-4/7/21 standards and
related applications, and convergence media technologies. From 2001 to 2002, he
was a staff associate in the Department of Electrical Engineering at Columbia
University, New York, NY, USA. He is currently a professor in the School of
Electronics and Information Engineering at Korea Aerospace University, Goyang,
Gyeonggi-do, Rep. of Korea. His research interests include video signal processing,
video coding, and digital broadcasting media.

Haechul Choi received his B.S. in electronics engineering from Kyungpook
National University, Daegu, Korea, in 1997, and his M.S. and Ph.D. in electrical
engineering from the Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea, in 1999 and 2004, respectively. He is an associate professor in the
Information and Communication Engineering at Hanbat National University,
Daejeon, Korea. From 2004 to 2010, he was a Senior Member of the Research Staff in
the Broadcasting Media Research Group of the Electronics and Telecommunications
Research Institute (ETRI). His current research interests include image processing,
video coding, and video transmission.

https://doi.org/10.1109/apmediacast.2015.7210286
https://doi.org/10.1109/JPROC.2008.917719

