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Abstract 
 

On mobile devices, image sequences are widely used for multimedia applications such as 
computer vision, video enhancement, and augmented reality. However, the real-time 
processing of mobile devices is still a challenge because of constraints and demands for 
higher resolution images. Recently, heterogeneous computing methods that utilize both a 
central processing unit (CPU) and a graphics processing unit (GPU) have been researched 
to accelerate the image sequence processing. This paper deals with various optimizing 
techniques such as parallel processing by the CPU and GPU, distributed processing on the 
CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using 
the optimizing techniques both individually and combined, several heterogeneous 
computing structures were implemented and their effectiveness were analyzed. The 
experimental results show that the heterogeneous computing facilitates executions up to 
3.5 times faster than CPU-only processing. 
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1. Introduction 

Mobile devices such as smartphones and tablets have been rapidly evolving with high 
performance built-in cameras and remarkable high-speed communication, giving rise to a 
variety of multimedia applications. Many of the multimedia applications such as computer 
vision, video enhancement, and augmented reality utilize image sequences processing 
technologies that refer to methods for the digital processing of a set of images. These 
technologies require significant amounts of computation because image sequences have a 
large amount of data. However, mobile platforms are still subject to constraints such as 
battery capacity and computational power. The battery supplies a limited power that 
remains a key factor in determination of computability. In addition, the mobile platform 
lacks floating point units and random access memory (RAM), which significantly reduces 
arithmetic accuracy and makes it difficult to handle high resolution video, respectively. 

In an effort to enable better image sequence processing, general-purpose computation 
on graphics processing units (GPGPU) [1] on the mobile platform has been actively 
researched. A graphics processing unit (GPU) enables parallel processing with multiple 
cores, which leads to significant improvement in energy consumption efficiency and 
execution time speedup. In addition to the GPU, image sequence processing also needs a 
central processing unit (CPU), through which the GPGPU performs, the operating system 
runs, traditional serial tasks are conducted, and images to be stored or streamed are entered 
as input for processing. A system with two or more dissimilar processors such as CPU and 
GPU is referred to as a heterogeneous computing system. This approach further improves 
image sequence processing on the mobile platform.  

To implement image sequence processing based on heterogeneous computing on the 
mobile platform, the following factors have to be considered: idle time between working 
schedules of the processors, format conversion to enable operable data on the other 
processor, available application memory supported by the mobile OS, data transmission 
between processors, and balancing of the differing computational power of the processors. 
On the basis of these considerations, this paper deals with several optimizing techniques 
including task distribution on the CPU side, double buffering, frame buffer object (FBO), 
and parallelization of the CPU and GPU. Applying the techniques both individually and 
combined, various structures: CPU-only (CO), CPU-GPU sequential (CGS), CPU-GPU 
parallel (CGP), distributed CPU-GPU sequential (DCGS), and distributed CPU-GPU 
parallel (DCGP) image sequence processing structures, are implemented and analyzed. In 
the CO structure, all jobs are conducted on the CPU. In the CGS structure, two kinds of 
tasks are distributed to each processor and are conducted sequentially for a frame. The CGP 
is an improvement on the CGS in which tasks are performed in parallel. For example, the 
n-th and (n+1)-th frames are processed on the GPU and the CPU, respectively. In the 
DCGS and the DCGP structures, the CPU task is divided into multiple modules and the 
modules are performed in parallel on the CPU. Experiments conducted, in which these 
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various configurable structures were evaluated according to their structural differences, 
showed how the optimizing techniques affect the execution performance of various image 
sequence processing algorithms in the mobile environment.  

The remainder of this paper is organized as follows. Section 2 presents conventional 
works related to image processing on mobile platforms. Sections 3 and 4 outlines 
considerations for mobile heterogeneous computing and the optimizing techniques used to 
accelerate image sequence processing with mobile heterogeneous computing, respectively. 
Section 5 describes the various heterogeneous computing implementation methods. 
Section 6 presents the experimental results obtained for the implementation methods. 
Finally, Section 7 concludes this paper. 

2. Related Work 
Image sequences with high resolution and quality have a large amount of data on which  
most image sequence processing algorithms carry out repetitive operations. These 
repetitive operations can be efficiently accelerated by a GPU, which has a parallel 
architecture consisting of multiple cores designed for handling multiple operations 
simultaneously. One of the key factors in the design is the use of properties such as unified 
shader, texture compression, and tiled architecture. The desktop platform has a variety of 
vendor-specific solutions and flexibility such as compute unified device architecture [2], 
Open Computing Language (OpenCL) [3], and OpenVIDIA [4] to facilitate use of the GPU 
for general-purpose computation. On the other hand, the mobile platform is limited to 
OpenCL and Open Graphics Library for Embedded Systems (OpenGL ES) [5]. OpenGL 
ES is an application programming interface (API) for hardware-accelerated graphics 

Table 1. Conventional mobile GPU based works for image processing and their performances 
relative to CPU-only computing. 

Reference Use Case API Source 
Type 

Image 
Resolution Device Speedup 

Ensor and Hall [7] Canny edge 
detection 

OpenGL 
ES 2.0 Image 640 × 480 Nexus One, iPhone 4, 

etc. 0.4x–2.4x 

Singhal et al. [8] SURF, Image 
processing 

OpenGL 
ES 2.0 Image 800 × 480 

ARM Cortex A8 (1 
GHz) and PowerVR 
SGX 540 (200 MHz) 

1.68x 
–6.98x 

Wang et al. [9] Visual object 
removal OpenCL Video 512 × 384 Qualcomm Snapdragon 

S4 - 

Pulli et al. [10] Image processing OpenCV Image 10,000 iterations 
on GPU Tegra 3 2.4x–14x 

Leskela et al. [12] Image processing OpenCL Video 2016 × 1512 
ARM Cortex A8 (550 
MHz) and  PowerVR 
SGX 530 (110 MHz) 

3.5x 

Lopez et al. [13] Image recognition OpenGL 
ES 2.0 Image 

64 × 64, 512 × 
512, 

1024 × 1024 

ARM Cortex A8 (770 
MHz) and PowerVR 
SGX 535 (110 MHz) 

2.5x 

Cheng and Wang [14] Face recognition OpenGL 
ES 2.0 Image 

128 × 128, 512 × 
512, 

1024 × 1024 
Tegra 2 1.8x 

Rister et al. [15] SIFT OpenGL 
ES 2.0 Image 320 × 280 Qualcomm Snapdragon 

S4, etc. 6.4x 
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rendering on mobile devices. OpenGL ES versions 1.0 and 1.1 are available for the 
implementation of simple GPGPU techniques using a fixed rendering pipeline. Version 2.0 
supports complicated GPGPU operations with programmable pipeline via the OpenGL 
shader language (GLSL) [6]. Version 3.0 further expands the programmability of the 
pipeline. By using GLSL, the fixed-function vertex and fragment operations of the graphics 
pipeline are replaced with user-specified programs, also known as vertex shader and 
fragment shader. These shaders provide flexible programmability, and support various 
control-flow construct sets and complex data types. 

Extensive research has recently been conducted on a mobile programmable embedded 
GPU for image processing and computer vision. Table 1 shows various conventional 
studies and their accelerations relative to the CPU-only structure. Ensor and Hall [7] 
implemented a real-time Canny edge detection shader and obtained 2.4x faster total 
execution time. Singhal et al [8] focused on optimized implementations of the cartoon-style 
non-photorealistic rendering, stereo matching, and speedup robust feature (SURF) 
algorithms using OpenGL ES 2.0. Their experimental results showed performance 
improvements in the range 5.2x through 6.9x for the image processing algorithms and 
1.68x for the SURF algorithm. Wang et al [9] studied a mapping object removal algorithm 
using OpenCL. Their accelerations came from the partitioned GPU operations. Pulli et al 
[10] introduced a variety of acceleration methods with the GPU version of the open source 
computer vision library (OpenCV) [11]. Their results showed 2.4x to 14x faster total 
execution time than the CPU version of OpenCV. 

As evidenced from these conventional works, most existing works [7-10] focused on 
mobile GPU acceleration. However, Leskela et al [12] proposed a heterogeneous 
computing method in which they analyzed the frame timing and introduced an optimization 
technique for work scheduling. Lopez et al [13] and Cheng et al [14] implemented image 
and face recognition systems on mobile platforms. The systems, which were implemented 
with CPU and GPU operations combined, exhibited 2x to 10x faster execution times for 
face recognition algorithms. Rister et al [15] introduced several techniques, such as 
partitioned heterogeneous computing and data compression for memory transfer, to speed 
up the scale-invariant feature transform detection (SIFT) algorithm. 

This paper takes into account both the CPU and the GPU on the mobile platform and 
presents the factors that have to be considered when using both processors. On the basis of 
these consideration, various optimizing techniques are implemented and their performance 
are analyzed. 

3. Considerations for Mobile Heterogeneous Computing 

3.1 Mobile Heterogeneous Computing 
Heterogeneous computing uses more than one kind of processor, such as a CPU and a GPU, 
to combine particular processing capabilities for high computational performance. Use of a 
GPU for general purposes can result in remarkable speed-ups on both mobile and desktop 
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platforms, especially with image processing and computer vision algorithms. In such cases, 
the CPU is employed for the OS, traditional serial tasks, and inputting image sequences 
stored in main memory and transmitted over networks.  

Nowadays, mobile devices are equipped with a system-on-a-chip mobile application 
processor (AP). This mobile AP is typically configured with a CPU, GPU, image signal 
processor, multi-format video codec, and various interface IPs; that is, a typical 
heterogeneous computing system. The GPU and CPU are connected via the system bus, 
which makes it possible to share the memory between them both. Through this memory 
sharing, one processor can access data processed by the other processor using OpenGL ES 
on mobile OS frameworks [16].  

Several factors have to be considered in heterogeneous computing on mobile platforms. 
The next subsections present these considerations in detail. 

3.2 Idle Time 
In a simple heterogeneous computing system, tasks are distributed to the CPU and GPU 
and performed in sequential order. In this sequential system, the CPU and GPU may have 
idle time when image sequences are processed because one processor can only start 
working after the other processor has finished its task [17]. Specifically, the GPU waits for 
an input image while the CPU is performing its task. Then, when the GPU is working on 
the input image from the CPU, the CPU falls into an idle state. The idle time between the 
tasks increases the total execution time in such a heterogeneous computing system.  

3.3 Data Transmission and Format Conversion 
In a mobile AP, the CPU and GPU share physical memory and the GPU obtains virtual 
memory from this shared memory. The CPU and GPU can transmit data to each other 
through the system bus. However, the system bus has a low memory bandwidth because of 
power supply and physical hardware size limitations on mobile devices. In addition, image 
sequences typically have a large amount of data and processing them is highly computation 
intensive. Thus, transmission may take a relatively long time on a heterogeneous 
computing. 

Moreover, there is an additional process required to transmit data between the CPU and 
GPU. The CPU and GPU handle data in different forms—pixels and vectors, respectively. 
More specifically, the data format that can be processed by the GPU is texture, which 
provides the information for rendering an image onscreen. These different data formats 
make it impossible to provide direct access between CPU arrays and GPU textures. Thus, 
one data format has to be converted into the other data format. The conversion instructions 
are supported by the OpenGL ES framework. 

Other format conversions may also be required for heterogeneous computing. Mobile 
OSs are limited to available data formats that support direct conversion from pixel to 
texture, called “texture conversion” in this paper. If data formats that do not support direct 
texture conversion are utilized in CPU processing, the data have to be changed to an 
intermediate format that provides direct texture conversion. This intermediate-format 
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conversion is conducted as a CPU task, followed by texture conversion as a GPU task.  
As described above, the use of GPGPU requires data transmission and format 

conversion. To determine the effect of these requirements, the times required were 
measured for a case in which image sequences were displayed through a GPU. The results 
are shown in Table 2. In this experiment, bitstreams coded using H.264/AVC [18] were 
given as inputs, and test sequences with three spatial resolutions, 500 frames, and 50 Hz 
were original or down-sampled versions of BascketballDrive—a common test sequence in 
the standardization of high efficiency video coding (HEVC/H.265) [19]. The mobile 
platform comprised an ARM v7-based dual-core CPU (1.3 GHz) and a PowerVR SGX 
543MP3 triple-core GPU (325 MHz). As shown in the table, the transmission and 
conversion times are considerable and constitute higher percentages for higher image 
resolutions. Therefore, heterogeneous computing should be implemented in manner such 
that transmission frequency and the amount of data transmitted between the CPU and GPU 
are minimized. 

3.4 Low Memory 
The small size of the mobile AP necessitates physical constraints on the amount of memory 
relative to that of the desktop platform. In addition, mobile applications are allowed only 
very limited memory because a mobile OS has to manage multiple applications at the same 
time. When the amount of memory occupied by an application exceeds the maximally 
available capacity, the mobile OS forcibly terminates the application. Consequently, for 
high resolution images, memory usage should be optimized within an available memory 
capacity range. 

3.5 Computational Power 
Because the power of the mobile AP is supplied from a battery, there are physical 
limitations to the power efficiency of the processors and other hardware. Thus, the mobile 
platform has a smaller number of cores, a lower CPU clock frequency, and a smaller 
number of shader units in the GPU than the desktop platform. This is the reason why the 
CPU and GPU of a mobile platform perform significantly lower than their desktop 
counterparts. 

Image sequence processing algorithms typically contain many operation commands for 
a large amount of data, which incurs a significant overhead on the mobile platform. 

Table 2. Format conversion and data transmission times on mobile CPU-GPU sequential structure. 

Resolutions 

Image sequence display using GPU 

(a): Intermediate-format 
conversion time (s) 

(b): Transmission + Texture 
conversion time (s) 

(a) + (b): 
% of (c) (c): Total execution time (s) 

854 × 480 1.58 5.2 58.24% 11.65 

1280 × 720 2.16 10.93 62.59% 20.92 

1920 × 1080 3.0 23.87 71.78% 37.43 
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Moreover, the CPU and GPU have differences in computability and processing time. These 
differences are likely to cause idle states in the processors when multiple frames are 
processed. Thus, an understanding of the overall performance of the mobile AP and 
maintaining a balance between the task loads of the processors in the implementation of 
image sequence processing algorithms are essential.  

4. Mobile Heterogeneous Computing for Image Sequence Processing 
On the basis of the considerations discussed in the previous section, this section presents 
several optimizing techniques for efficient implementation of mobile heterogeneous 
computing.  

4.1 Parallelization of CPU and GPU 
The CPU and GPU of a mobile platform can execute operations in parallel. In the case of 
the CGS structure, the GPU starts accepting the n-th frame after it is processed on the CPU. 
Thus, the GPU may fall into an idle state while the CPU is processing a frame. On the other 
hand, in the case of the CGP structure, the GPU can process the n-th frame while the CPU 
is processing the (n+1)-th frame. This kind of parallelization can improve the operational 
efficiency of both the CPU and the GPU because they can simultaneously perform their 
instructions for image frames. Thus, the parallelism can decrease the waiting time and 
reduce significantly the total execution time. 

For parallelization of the CPU and GPU, the CPU-GPU pipeline structure should be 
retained because the CPU and GPU are usually not allowed to handle the same frame at the 
same time, and the CPU and GPU tasks should be independently processable on each 
processor. The parallelization can be implemented as the following workflow using thread 
level parallelism (TLP). The execution of a mobile application starts on the main thread by 
the CPU because a mobile OS gains access to the application stored in the main memory 
via CPU processing; the main thread then calls the sub-thread for the GPU task. In this 
parallelization technique, independent instruction streams of the CPU and GPU tasks are 
processed simultaneously on the main thread and sub-threads, respectively. 

The CPU task itself can also be processed in parallel, for which the CPU task is divided 
into modules that are distributed to threads—called task distribution. The CPU task 
typically includes independently processable modules such as the decoding and the 
intermediate-format conversion when a coded bitstream of an image sequence is given 
from the main memory as input. These modules can be distributed into separate threads in 
such a manner that the decoding operation is on the main thread and the 
intermediate-format conversion is on another sub-thread. These threads can operate in 
parallel using TLP. In this case, the decoding and the conversion modules should also 
maintain a pipeline structure, as in CPU-GPU parallelization. 

4.2 Double Buffering 
As described in Section 3, the processing times of CPU and GPU tasks differ according to 
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the processing powers of the processors and the amount of data contained in each frame. 
These differences can cause critical problems such as data loss and meaningless repetitions 
of the same processing if the tasks are operating in parallel [20]. For example, if the 
processing time of a CPU task is considerably less than that of the GPU task, the 
cumulative time difference can cause the CPU processed data to be dropped, much like the 
effect of buffer overflow. Meaningless repetitions can occur in the opposite case, buffer 
underflow. If the GPU task is finished much earlier than the CPU task, the same frame can 
be fed again to the GPU task. These problems were observed in experiments conducted, the 
results of which are shown in Table 3; the experimental conditions were the same as in 
Table 2, except for the image processing algorithms implemented. In these experiments, 
all test sequences had 500 frames and CPU and GPU tasks included Gray-scaling and Sobel 
edge detection, respectively. The sequential structure processed exactly 500 frames on the 
GPU without data loss or repetition problems. However, the parallel structure had fewer 
frames processed on the GPU for test sequences with 854×480 and 1280×720 pixels, which 
shows that data loss occurred. For test sequences with 1920×1080 pixels, the GPU task 
processed 43 more than the original frames. This reveals that 43 meaningless repetitions 
happened because the CPU task took more time for the relatively larger amount of image 
data. These problems, caused by the parallelism, reduce the accuracy and efficiency of the 
image sequence processing. 

These problems can be resolved by inserting a buffer between the CPU and the GPU 
and checking the buffer state. However, as described in Section 3.3, the data transmission 
time associated with buffer read and write is considerable on a mobile platform. When one 
processor is transmitting data to the buffer, the other should wait to access the buffer during 
the transmission time. A suitable solution to all of these problems is double buffering 
method. Fig. 1 shows double buffering control using two First-In First-Out buffers, which 
enables one thread to occupy one buffer when the other thread is accessing the other buffer. 
Thus, the parallelized tasks can read or write image data alternately from or to the buffers. 
In this simultaneous access manner, the double buffering reduces the waiting time to access 
the buffer and solves parallelization problems such as the data loss and meaningless 

Table 3. Data loss and meaningless repetitions in parallel processing of the CPU and GPU 
tasks—Gray-scaling and Sobel edge detection, respectively. 

Resolutions 
Heterogeneous 

Structure 
Types 

Gray-scaling on CPU + Sobel edge detection on GPU 

Number of GPU processed frames Total execution time (s) 

854 × 480 
Sequential 500 15.0 

Parallel 411 8.2 

1280 × 720 
Sequential 500 24.8 

Parallel 374 14.9 

1920 × 1080 
Sequential 500 47.1 

Parallel 542 35.5 
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repetitions. 
Another consideration for the buffer is a lack of RAM on the mobile platform. As  

described in Section 3.4, the mobile OS may forcibly terminate any application exceeding 
the memory capacity limit. Thus, in the implementation of mobile heterogeneous 
computing, the buffer size should be carefully determined considering the available 
memory capacity and image resolution. 

4.3 Data Transmission Minimization 
As described in Section 3.3, the use of a mobile GPU for image sequence acceleration 
requires data transmission between the CPU and GPU, which is a major cause of 
performance degradation in mobile heterogeneous computing. The transmission time 
increases proportionally with the size of image data, such as spatial and temporal 
resolutions of image sequences. Thus, it could be reduced by methods that compress image 
data [10, 15, 21]. 

The transmission time also increases, especially in multiple serial processing, where 
operations are applied to the result of the previous operation. This sort of multiple serial 
processing is included in many image sequence processing algorithms such as Sobel and 
Canny edge operators. In these algorithms, the results of a GPU task need to be transmitted 
to a CPU task and then returned as input for the next operation. This procedure requires 
textures that include many instructions to access the CPU image array, which makes 
transmission occur frequently. To minimize this kind of transmission, a competitive 
solution is the ping-pong technique using FBO [22]. The mobile GPU transmits the image 
data processed by GLSL operations to a frame buffer for output on a device screen. At this 
point, the processed image data in the frame buffer can be copied and stored in the FBO of 
the GPU memory. When this is done, the data in the FBO can be reused for the next 
processing stage on the GPU without being displayed onscreen by employing the 
Off-Screen Rendering command of OpenGL ES. Consequently, FBO enables reuse of 
GPU results, preventing the results from being passed again through the CPU, which 
minimizes transmission time. 

 

 
Fig. 1. Double buffer for parallel processing. 
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Table 5. Performance comparison of mobile CPU and mobile GPU for various image processing 
algorithms. 

Algorithms Resolutions 
Number of processed frames (fps) 

Speedup on CPU on GPU 

Gray-scaling 

854 × 480 67 33 x0.49 

1280 × 720 34 21 x0.60 

1920 × 1080 17 14 x0.80 

Gaussian 
blurring 

854 × 480 12 33 x2.75 

1280 × 720 6 21 x3.50 

1920 × 1080 3 14 x4.60 

Sobel edge 
detection 

854 × 480 16 33 x2.00 

1280 × 720 8 21 x2.60 

1920 × 1080 4 14 x3.50 

Dilation 

854 × 480 13 33 x2.50 

1280 × 720 6 21 x3.50 

1920 × 1080 3 14 x4.60 

Bilateral 
filter 

854 × 480 20 33 x1.65 

1280 × 720 9 21 x2.30 

1920 × 1080 4 14 x3.50 

 

 

To ascertain how much transmission time can be minimized using FBO, experiments 
were conducted for structures with or without FBO; the structure without FBO repeatedly 
passes intermediate results through the CPU, whereas the structure with FBO does not. In 
the experiments, the experimental conditions were the same as those in Table 2. As shown 
in Table 4, the structure with FBO achieved a higher acceleration with average 2.4x 
speedup over that without FBO. This acceleration resulted from lower transmission time 
and higher GPU usage efficiency. 

4.4 Task Assignment 
It has been reported that GPGPU is suitable for image processing. To verify this claim, 
various image processing algorithms were simulated on the mobile CPU and GPU, 
respectively, under  
the same experimental conditions as those in Table 2. Table 5 shows that most algorithms 

Table 4. Data transmission speedup using the frame buffer object on the CPU-GPU sequential 
image processing structure for Canny edge detection algorithm. 

Algorithms Resolutions 
Total execution time (s) 

Speedup 
Structure without FBO Structure with FBO 

Canny 
Edge 

Detection 

854 × 480 39.84 16.84 x2.37 
1280 × 720 79.71 32.68 x2.44 

1920 × 1080 165.03 69.32 x2.38 
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are appropriate for GPU operations, but Gray-scaling is more beneficial for CPU 
operations. These results confirm that image processing algorithms do not always have to 
be implemented on the GPU. This is because data transmission is a key factor in deciding 
whether a workload is suitable for CPU or GPU. In general, compute-intensive algorithms 
can benefit more from the GPU, while memory intensive applications are better suited to 
the CPU. Thus, when implementing image sequence processing algorithms for mobile 
heterogeneous computing, the algorithms should be modularized considering their 
characteristics and the modules should be distributed appropriately to each processor. 

5. Implementation Structures of Heterogeneous Computing System 
To analyze the effectiveness of various heterogeneous computing structures, we 
implemented four structures, CGS, CGP, DCGS, and DCGP, while taking into account the 
considerations discussed in Section 3, and applying selectively the methods described in 
Section 4. The CPU-only structure was also implemented as an anchor for comparisons. In 
those implementations, all heterogeneous computing structures had FBO to minimize the 
data transmission time. To accept the inputs of image sequences from H.264/AVC coded 
bitstreams stored in memory, all of the structures contained an H.264 decoding module that 
performed on the CPU. 

5.1 CPU-only Processing (CO) 
The CO structure is an easy and common implementation on the mobile platform. As 
shown in Fig. 2(a), all modules perform the image processing sequentially as a CPU task, 
and the GPU is used only for displaying the output on a screen. To obtain images from 
compressed bitstreams, this structure performs H.264 decoding. Intermediate-format 
conversion is not always required in implementations of image sequence processing, but is 
necessary when using image processing libraries such as OpenCV. The CO structure could 
be suitable in cases where image sequence processing algorithms have a small number of 
commands. 

5.2 CPU-GPU Sequential Processing (CGS) 
CGS is a base structure that employs a GPU to accelerate image sequence processing. As 
shown in Fig. 2(b), the CPU tasks include decoding and intermediate-format conversion, 
and the GPU tasks include texture conversion, image processing, and display. More 
specifically, on the CPU, decoding is first performed, followed by intermediate-format 
conversion from pixel data to texture convertible format. On the GPU, texture data are 
obtained by texture conversion, and then image processing is performed. 

In the CGS structure, the operations concentrated in the CPU in the CO structure are 
distributed between the CPU and the GPU. This distribution can significantly reduce the 
image sequence processing time, especially for complex image processing algorithms. On 
the other hand, the idle time between the tasks still occupies a significant proportion of the 
execution time in the sequential structure. 
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(a) : 

 

(b) : 

 

(c) : 

 

(d) : 

 

(e) : 

 

 
 

 
Fig. 2. Outlines of image sequence processing structures: (a) CPU-Only Processing, (b) CPU-GPU 

Sequential Processing, (c) Distributed CPU-GPU Sequential Processing, (d) CPU-GPU Parallel 
Processing, and (e) Distributed CPU-GPU Parallel Processing. 
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5.3 Distributed CPU-GPU Sequential Processing 
In the CGS structure, the CPU burden rises significantly as the image resolution is higher. 
To reduce the CPU burden, the DCGS structure distributes and parallelizes the decoding 
and the intermediate-format conversion modules of the CPU task using a multithreaded 
pipeline, as shown in Fig. 2(c). This parallelization of the pipelined modules may generate 
data loss, meaningless repetitions for the same frame, and waiting time to access the buffer. 
To solve these problems, the CGS structure employs double buffering between a main 
thread for decoding and a sub-thread for intermediate-format conversion. 

5.4 CPU-GPU Parallel Processing 
The idle time between the CPU and the GPU can be reduced via processor parallelization 
of their tasks and double buffering between them. As shown in Fig. 2(d), the parallelization 
is implemented by utilizing a main thread for the CPU task and a sub-thread for the GPU 
task. On the CPU, the main thread performs decoding and intermediate-format conversion 
sequentially, and then stores the results into the double buffer. On the GPU, the sub-thread 
converts the texture convertible frame data to texture, performs image processing, and then 
displays the output. 

5.5 Distributed CPU-GPU Parallel Processing 
The DCGP structure applies task distribution, parallelization, and double buffering to the 
CPU tasks of the CGP structure to improve the sequential processing on the CPU of the 
CGP. Thus, all of the decoding of the CPU tasks, the intermediate-format conversion of the 
CPU tasks, and the GPU tasks are performed in parallel by using three threads, as shown in 
Fig. 2(e). More specifically, a main thread first performs the decoding and stores the 
decoded frames in the double-buffer located between the decoding and the 
intermediate-format conversion. Next, a sub-thread converts the decoded frames in the 
double-buffer to texture convertible format, and then stores the results in the other 
double-buffer located between the CPU and the GPU tasks. Third, a GPU thread conducts 
texture conversion and image processing. Finally, the output is displayed. 

6. Experimental Results 
To analyze the benefits of the parallel and distributed mobile heterogeneous computing 
system, we implemented the five image processing structures described in Section 5: CO, 
CGS, DCGS, CGP, and DCGP. The CGS, DCGS, CGP, and DCGP structures are based on 
heterogeneous computing, whereas CO utilizes only the CPU. On top of the structures, we 
also implemented a variety of commonly used image processing algorithms including 
Gray-scaling, Gaussian blurring, Bilateral filter, Sobel edge detection, Canny edge 
detection, Dilation, and Erosion. The mobile platform comprised an ARM v7-based 1.3 
GHz Dual-core CPU, a PowerVR SGX 543MP3 triple-core GPU, and 1 GB RAM. To 
employ the GPGPU, OpenGL ES 2.0 was used. Bitstreams coded using H.264/AVC were 
given as inputs, and test sequences with three spatial resolutions, 500 frames, and 50 Hz 
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were original or down-sampled versions of BascketballDrive. Fig. 3 shows examples of 
each image processing result on the mobile device. The performances of all the structures 
are listed in Tables 6 and 7, where the speedup is the ratio of the CO structure to a 
particular heterogeneous structure in terms of the total execution time. The speedup implies 
how much faster the particular heterogeneous computing structure is than the CO structure. 
Moreover, the running times are presented separately according to the CPU and the GPU 
tasks. 

6.1 CO vs. Heterogeneous Computing 
First, the use of the GPGPU is evaluated. As shown in Tables 6 and 7, the structures using 
GPGPU, such as CGS, DCGS, CGP, and DCGP, achieved average CPU execution time 
reductions of 75.9%, 81.2%, 70.3%, and 70.2% compared to CO,  respectively. These 
substantially reduced CPU burdens affecting directly the total execution times, which were 
also reduced on average by 58%, 64%, 70%, and 70%, respectively. The total execution 
time of the heterogeneous implementations contains the data transmission time and the 
texture conversion time, whereas these times are not required in the CO structure. 

  
(a) (b) 

  
(d) (c) 

  
(e) (f) 

Fig. 3. Examples of image processing algorithms. (a) original image, (b) Gaussian blurring, (c) 
Sobel edge detection, (d) Canny edge detection, (e) Gray-scaling and Dilation, and (f) Gray-scaling 

and Erosion. 



4962                              Baek et al.: Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing 

Table 6. Execution time and speedup ratio comparison of image processing algorithms on the 
homogeneous computing implementations (OC, CGS, and DCGS). 

Algorithms Spatial 
resolution 

Execution Time (s) 

OC CGS DCGS 

CPU CPU GPU Total Speedup CPU GPU Total Speedup 

Gray-scaling 
854 x 480 10.21 7.58 4.17 11.75 0.87x 6.39 4.93 11.33 0.9x 

1280 x 720 19.96 15.74 5.12 20.86 0.96x 12.36 7.94 20.3 0.98x 
1920 x 1080 35.95 34.67 8.95 43.61 0.82x 24.39 11.52 35.91 1.0x 

Gaussian 
blurring 

854 x 480 19.94 7.23 7.88 15.12 1.32x 6.40 6.27 12.67 1.57x 
1280 x 720 29.91 15.73 9.33 25.06 1.19x 12.24 8.19 20.43 1.46x 

1920 x 1080 58.16 34.62 13.76 48.38 1.2x 24.19 12.64 36.82 1.58x 

Bilateral 
filter 

854 x 480 30.83 7.24 8.06 15.30 2.01x 6.18 6.98 13.16 2.34x 
1280 x 720 62.89 15.94 9.04 24.97 2.52x 12.46 7.92 20.38 3.09x 

1920 x 1080 122.38 34.47 10.48 44.95 2.72x 24.16 11.37 35.53 3.44x 

Sobel edge 
detection 

854 x 480 19.98 7.32 7.70 15.02 1.33x 6.54 5.80 12.33 1.62x 
1280 x 720 39.94 15.71 9.30 25.01 1.60x 12.10 8.12 20.21 1.98x 

1920 x 1080 79.66 34.71 12.72 47.43 1.68x 24.02 12.29 36.31 2.19x 

Canny edge 
detection 

854 x 480 54.03 7.28 9.56 16.84 3.21x 5.75 9.44 15.19 3.56x 
1280 x 720 103.94 15.63 17.05 32.68 3.18x 12.00 17.06 29.06 3.58x 

1920 x 1080 211.25 35.14 34.18 69.32 3.05x 26.76 34.41 61.18 3.45x 

Dilation 
854 x 480 49.91 7.25 8.05 15.30 3.26x 6.05 8.50 14.56 3.43x 

1280 x 720 99.59 15.78 12.55 28.33 3.51x 12.26 11.82 24.07 4.14x 
1920 x 1080 207.59 34.84 24.13 58.97 3.52x 26.26 23.23 49.49 4.19x 

Erosion 
854 x 480 50.01 7.21 8.00 15.21 3.29x 6.03 8.32 14.36 3.48x 

1280 x 720 100.34 15.78 12.57 28.34 3.54x 12.23 11.91 24.14 4.16x 
1920 x 1080 211.52 35.04 24.14 59.18 3.57x 26.17 23.19 49.37 4.28x 

Average 
854 x 480 33.56 7.30 7.63 14.93 2.25x 6.19 7.18 13.37 2.51x 

1280 x 720 65.22 15.76 10.71 26.47 2.46x 12.23 10.42 22.66 2.88x 
1920 x 1080 132.36 34.78 18.34 53.12 2.49x 25.14 18.38 43.51 3.04x 

 
Table 7. Execution time and speedup ratio comparison of image processing algorithms on the 

heterogeneous computing implementations (CGP and DCGP). 

Algorithms Spatial 
resolution 

Execution Time (s) 

CGP DCGP 

CPU GPU Total Speedup CPU GPU Total Speedup 

Gray-scaling 
854 x 480 9.85 10.10 10.10 1.01x 9.89 10.12 10.12 1.01x 

1280 x 720 19.47 19.94 19.94 1.0x 19.41 19.84 19.84 1.01x 
1920 x 1080 33.81 33.82 33.82 1.06x 33.26 33.26 33.26 1.08x 

Gaussian 
blurring 

854 x 480 9.90 10.12 10.12 1.97x 9.90 10.12 10.12 1.97x 
1280 x 720 19.36 19.88 19.88 1.5x 19.45 19.90 19.90 1.50x 
1920 x 1080 34.14 34.19 34.19 1.7x 33.81 34.49 34.49 1.69x 

Bilateral 
filter 

854 x 480 9.88 10.13 10.13 3.04x 9.94 10.14 10.14 3.04x 
1280 x 720 19.45 19.96 19.96 3.15x 19.27 19.74 19.74 3.19x 
1920 x 1080 33.69 33.70 33.70 3.63x 33.43 33.42 33.42 3.66x 

Sobel edge 
detection 

854 x 480 9.91 10.14 10.14 1.97x 10.11 10.32 10.32 1.94x 
1280 x 720 19.39 19.92 19.92 2.01x 19.37 19.82 19.82 2.02x 
1920 x 1080 34.14 34.17 34.17 2.33x 33.63 34.27 34.27 2.32x 

Canny edge 
detection 

854 x 480 12.15 12.53 12.53 4.31x 12.11 12.48 12.48 4.33x 
1280 x 720 21.88 22.60 22.60 4.6x 22.12 22.78 22.78 4.56x 
1920 x 1080 46.00 47.63 47.63 4.43x 46.31 47.85 47.85 4.41x 

Dilation 
854 x 480 9.99 10.28 10.28 4.85x 10.19 10.45 10.45 4.78x 

1280 x 720 19.42 19.98 19.98 4.98x 19.72 20.18 20.18 4.94x 
1920 x 1080 39.03 40.16 40.16 5.17x 39.56 40.72 40.72 5.10x 

Erosion 
854 x 480 12.02 10.28 10.28 4.86x 10.13 10.40 10.40 4.81x 

1280 x 720 19.41 19.94 19.94 5.03x 19.60 20.10 20.10 4.99x 
1920 x 1080 39.21 40.40 40.40 5.24x 39.77 40.84 40.84 5.18x 

Average 
854 x 480 10.24 10.51 10.51 3.19x 10.33 10.58 10.58 3.17x 

1280 x 720 19.77 20.32 20.32 3.21x 19.85 20.34 20.34 3.21x 
1920 x 1080 37.15 37.73 37.73 3.51x 37.11 37.84 37.84 3.50x 
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Nevertheless, the heterogeneous computing structures achieved significant speedups. It can 
also be seen that the compute-intensive algorithms Canny, Dilation, and Erosion had higher 
speedups of 2.0x through 5.2x than the simple algorithms Gray-scaling and Gaussian 
Blurring, which had only 1.3x through 1.9x. In the same fashion, test sequences with higher 
spatial resolutions obtained higher acceleration ratios. Another observation is that the 
Gray-scaling algorithm was accelerated in the CGP and DCGP structures. As described in 
Section 4.4, this algorithm is suitable for CPU operations. Thus, the CGS and DCGS 
structures have longer  execution times than the CO structure. However, as the CGP and 
DCGP structures perform image processing in parallel with other modules such as 
decoding and intermediate-format conversion, they achieved an overall total execution 
time reduction. 

6.2 OC vs. CGS 
CGS executes CPU and GPU tasks sequentially for a frame, and the image processing 
algorithms are executed on the GPU, as shown in Fig. 4(a). As listed in Table 6, for all the 
image processing algorithms except Gray-scaling, CGS showed faster execution times than 
CO as a result of high GPU throughput. These experimental results verify that use of the 
GPU for general purposes is feasible, especially for complex image processing algorithms. 
On the other hand, CGS ran slower by 2 to 18% than CO for Gray-scaling. Because 
Gray-scaling has simple and light computations, the acceleration achieved using the GPU 
is not enough to overcome the overhead caused by data transmission between the 
processors and format conversion that are necessary to use the GPU. 

6.3 CGS vs. DCGS 
As shown in Table 6, DCGS obtained on average 2.51x, 2.88x, and 3.04x speedup of the 
total execution time relative to CO for test sequences with 854×480, 1280×720, and 
1920×1080 pixels, respectively. The performance of DCGS is slightly higher than that of 
CGS, which achieved on average 2.25x, 2.46x, and 2.49x speedup. It can be seen that the 
performance improvement of DCGS relative to CGS is higher for test sequences with 
higher spatial resolution. As a larger amount of computing is required, DCGS can reduce 
the execution time more significantly. The reason for the acceleration includes the fact that 
the processing time for decoding and intermediate-format conversion on the CPU can be 
reduced via distribution and parallelization, as illustrated in Fig. 4(b). As shown in the 
figure, Thread-0 for the decoding and Thread-1 for the intermediate-formant conversion 
perform in parallel. Thread-0 has no idle time when the buffer is not full. However, 
Thread-1 has latency until the Thread-2 has finished the GPU task because the CPU and 
GPU tasks operate sequentially. Therefore, as shown in Table 6, the GPU execution time 
of DCGS remained approximately unchanged relative to that of CGS. 

6.4 CGS vs. CGP 
The main difference between CGP and CGS is the parallelization of the CPU and GPU 
tasks. This parallelization can have Thread-0 conduct its task incessantly, as in Fig. 4(c). 
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(a) : 

 

(b) : 

 

(c) : 

 

(d) : 

 
 

Fig. 4. Examples of processing procedure of each implemented structure (a) the CGS structure, (b) 
the DCGS structure, (c) the CGP structure, and (d) the DCGP structure. 
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As expected, CGP achieved an average reduction of more than 12% in the running time 
compared to CGS, as shown in Tables 6 and 7. The result proves that CGP works well 
with reduced idle time between the CPU and GPU as a result of parallelization. To decrease 
further the idle time, CGP should have similar processing times between the CPU and GPU 
tasks. The times can be brought closer by using task distribution and load balancing 
between the tasks. 

6.5 CGP vs. DCGP 
In DCGP, the decoding, intermediate-format conversion, and GPU tasks operate in parallel 
using three threads and two of the double-buffers, as shown in Fig. 4(d). As shown in the 
aforementioned experimental results, the distribution of the CPU task in DCGS reduced the 
idle time between the CPU modules compared to CGS, and the parallelization of the CPU 
and GPU tasks in CGP also reduced the idle time between the two processors compared to 
CGS. Therefore, DCGP could reasonably be expected to have a fast execution time equal to 
the sum of the time gains obtained in the DCGS and CGP structures. However, DCGP had 
approximately the same performance as CGP without the execution time gain of the 
distributed and parallel processing of the CPU modules, as shown in Table 7. This 
unexpected result occurred for the following reasons: data transmission between the CPU 
and GPU of the n-th frame takes a longer time than CPU processing of Thread-0 and 
Thread-1 for the (n+1)-th frame, which results in idle time on the CPU side when the buffer 
for decoded frames is full. Therefore, in the DCGP structure, if the data transmission is 
faster than the CPU task processing, DCGP can surpass CGP. 

7. Conclusion 
Image sequence processing on a mobile platform can be accelerated by increasing the AP 
utilization efficiency via heterogeneous computing. For high utilization efficiency, this 
paper dealt with optimization techniques including task distribution on the CPU side, 
double buffering, FBO, and parallelization of the CPU and GPU. The experimental results 
obtained verified that the optimization techniques resulted in significantly improved image 
sequence processing times in the various heterogeneous computing structures. This kind of 
acceleration can facilitate real-time multimedia applications such as video enhancement, 
video coding, augmented reality, and computer vision on mobile devices. 
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