Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.337-340
/
2009
Since a hardware accelerator for 3D graphics processing GPU(Graphics Processing Unit)'s performance has been improving constantly. This is the efficient way was introduced for complex graphics application, but it is rarely used to utilize 100% resources on GPU. GP-GPU(general-purpose GPU), including operations on the GPU and supporting common operations can be handled by the processor, is noted by depending on the distribution of resources that can be effectively controlled. In this paper, the simulator was implemented that supports virtual environment of GP-GPU and available for program design and debugging. Through this, the co-design development environment support simultaneous design fast and reliable verification that are available to build the interface of three-dimensional graphics display.
Recently, GPU (Graphics Processing Unit) has been improved rapidly on the need of speed for gaming. As a result, GPU contains multiple ALU (Arithmetic Logic Unit) for parallel processing of a lot of graphics data, such as transform, ray tracing, etc. Therefore, this paper proposed a technique for parallel processing of spatial data using GPU. Spatial data consists of multiple coordinates, and each coordinate contains value of x and y axis. To display spatial data graphics operations have to be processed to large amount of coordinates. Because the graphics operation is identical and coordinates are multiple data, SIMD (Single Instruction Multiple Data) parallel processing of GPU can be used for processing of spatial data to improve performance. This paper implemented SIMD parallel processing of spatial data using two kinds of SDK (Software Development Kit). CUDA and ATI Stream are used for NVIDIA and ATI GPU respectively. Experiments that measure time of calculation for graphics operations are carried out to observe enhancement of performance. Experimental result is reported that proposed method can enhance performance up to 1,162% for graphics operations. The proposed method that uses parallel processing with GPU for spatial data can be generally used to enhance performance for applications which deal with large amount of spatial data.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.328-333
/
2010
최적해를 구하는 효과적인 방법 중 하나인 GA (Genetic Algorithm)은 높은 품질의 해를 구하기 위해서 많은 연산시간이 필요하지만, GPU (Graphics Processing Unit)의 높은 데이터 병렬처리 능력과 우수한 부동소수 연산능력을 이용하면 빠르게 처리 가능하다. 이 논문에서는 GPU를 이용하여 가속한 섬 기반의 RVGA (Real-Valued Genetic Algorithm)와 GPU를 이용하지 않는 RVGA를 비교하여 평가하였으며, 또한 GPU를 이용하지만 RVGA가 아닌 Simple GA인 경우와도 비교하여 평가 하였다. 그 결과, GPU를 이용한 경우 속도 향상을 할 수 있었으며, Simple GA보다 RVGA가 더 속도가 향상되었다.
Recently, Distributed computing processing begins using both CPU(Central processing unit) and GPU(Graphic processing unit) to improve the performance to overcome darksilicon problem which cannot use all of the transistors because of the electric power limitation. There is an integrated graphics processor that CPU and GPU share memory and Last level cache(LLC). But, There is no LLC access rules between CPU and GPU, so if GPU and CPU processes run together at the same time, performance of both processes gets worse because of the contention on the LLC. This Paper gives evidence to prove the need of the Cache Partitioning and is mentioned about the cache partitioning design using page coloring to allocate the L3 Cache space only for the GPU process to guarantee GPU process performance.
KIPS Transactions on Computer and Communication Systems
/
v.9
no.9
/
pp.189-196
/
2020
Recently, GPU cloud computing technology applying GPU(Graphics Processing Unit) devices to virtual machines is widely used in the cloud environment. In a cloud environment, GPU devices assigned to virtual machines can perform operations faster than CPUs through massively parallel processing, which can provide many benefits when operating high-performance computing services in a variety of fields in a cloud environment. In a cloud environment, a GPU device can help improve the performance of a virtual machine, but the virtual machine scheduler, which is based on the CPU usage time of a virtual machine, does not take into account GPU device usage time, affecting the performance of other virtual machines. In this paper, we test and analyze the performance degradation of other virtual machines due to the virtual machine that performs GPGPU(General-Purpose computing on Graphics Processing Units) task in the direct path based GPU virtualization environment, which is often used when assigning GPUs to virtual machines in cloud environments. Then to solve this problem, we propose a GPGPU task management method for a virtual machine.
This paper presents a computationally efficient implementation of a Hamming code decoder on a graphics processing unit (GPU) to support real-time software-defined radio, which is a software alternative for realizing wireless communication. The Hamming code algorithm is challenging to parallelize effectively on a GPU because it works on sparsely located data items with several conditional statements, leading to non-coalesced, long latency, global memory access, and huge thread divergence. To address these issues, we propose an optimized implementation of the Hamming code on the GPU to exploit the higher parallelism inherent in the algorithm. Experimental results using a compute unified device architecture (CUDA)-enabled NVIDIA GeForce GTX 560, including 335 cores, revealed that the proposed approach achieved a 99x speedup versus the equivalent CPU-based implementation.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.5
/
pp.393-397
/
2005
When a real-time image processing application is implemented with a general-purpose computer, CPU (Central Processing Unit) is usually heavily loaded and in many cases that CPU alone cannot meet the real-time requirement at all. Most modern computers are equipped with powerful Graphics Processing Units (GPUs) to accelerate graphics operations. There is a trend that the power of GPU outgrows that of CPU. If we take advantage of the powerful GPU for more general operations other than pure graphics operations, the processing time can be reduced. In this study, we will present techniques that apply GPU to general operations such as image processing procedures. Our experiment results show that significant speed-up can be achieved by using GPU.
This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.
GPGPU(General Purpose Graphics Processing Unit) 병렬처리 시스템인 CUDA(Compute Unified Device Architecture)는 컴퓨터에서의 고속 연산 처리를 위해 많이 사용되어왔다. CUDA에서 연산 처리를 하기 위해서는 CUDA의 특성을 이해해야 한다. CUDA는 CPU(Central Processing Unit)가 처리하는 Host 영역과 GPU(Graphics Processing Unit)가 처리하는 영역인 Device 영역이 존재하며, 이 두 영역간의 데이터 복사를 통해 연산 처리를 진행한다. 이런 구조적인 특성상 메인 메모리에서 GPU 메모리로 입력 데이터를 전달해야 GPU를 이용해 연산을 처리할 수 있는 구조를 가지고 있다. 하지만 이러한 처리 구조로 인해 연산 시간과 별도로 메인 메모리와 GPU 메모리간의 데이터 복사시간이 존재하며, 추가적으로 발생하는 메모리 복사 시간으로 인해 오버헤드가 발생하게 된다. 본 논문에서는 실험을 통해 메모리 복사 시간, 연산의 반복 횟수 그리고 연산의 복잡성이 전체 성능에 어떤 영향을 미치는지 논하고자 한다.
This paper presents a real-time GPU (graphics processing unit) ray casting scheme for rendering isosurfaces of BCC (body-centered cubic) volume datasets. A quartic spline field is built using the 7-direction box-spline filter accompanied with a quasi-interpolation prefilter. To obtain an interactive rendering speed on the graphics hardware, the shader code was optimized to avoid lookup table and conditional branches and to minimize data fetch overhead. Compared to previous implementations, our work outperforms the comparable one by more than 20% and the rendering quality is superior than others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.