• Title/Summary/Keyword: Graphene Nanoribbon (GNR)

Search Result 11, Processing Time 0.03 seconds

Redox Reaction Investigation of Graphene Nanoribbon

  • Yu, Young-Jun
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.35-37
    • /
    • 2018
  • The redox reaction on graphene nanoribbon (GNR) field effect transistors(FET) has been studied. In detail, upon employing an electrolyte gating, we verified electron transport performance modulation of GNR FET by monitoring conductance variation under oxidation and reduction processes. The conductance enhancement of GNR via removal of PMMA residue on graphene surface during redox cycles was also observed.

Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates

  • Song, U-Seok;Kim, Yu-Seok;Jeong, Min-Uk;Park, Jong-Yun;An, Gi-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.145.2-145.2
    • /
    • 2013
  • The band-gap opening in graphene is a key factor in developing graphene-based field effect transistors. Although graphene is a gapless semimetal, a band-gap opens when graphene is formed into a graphene nanoribbon (GNR). Moreover, the band-gap energy can be manipulated by the width of the GNR. In this study, we propose a site-specific synthesis of a width-tailored GNR directly onto an insulating substrate. Predeposition of a diamond-like carbon nanotemplate onto a SiO2/Si wafer via focused ion beam-assisted chemical vapor deposition is first utilized for growth of the GNR. These results may present a feasible route for growing a width-tailored GNR onto a specific region of an insulating substrate.

  • PDF

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Analysis of read speed latency in 6T-SRAM cell using multi-layered graphene nanoribbon and cu based nano-interconnects for high performance memory circuit design

  • Sandip, Bhattacharya;Mohammed Imran Hussain;John Ajayan;Shubham Tayal;Louis Maria Irudaya Leo Joseph;Sreedhar Kollem;Usha Desai;Syed Musthak Ahmed;Ravichander Janapati
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.910-921
    • /
    • 2023
  • In this study, we designed a 6T-SRAM cell using 16-nm CMOS process and analyzed the performance in terms of read-speed latency. The temperaturedependent Cu and multilayered graphene nanoribbon (MLGNR)-based nanointerconnect materials is used throughout the circuit (primarily bit/bit-bars [red lines] and word lines [write lines]). Here, the read speed analysis is performed with four different chip operating temperatures (150K, 250K, 350K, and 450K) using both Cu and graphene nanoribbon (GNR) nano-interconnects with different interconnect lengths (from 10 ㎛ to 100 ㎛), for reading-0 and reading-1 operations. To execute the reading operation, the CMOS technology, that is, the16-nm PTM-HPC model, and the16-nm interconnect technology, that is, ITRS-13, are used in this application. The complete design is simulated using TSPICE simulation tools (by Mentor Graphics). The read speed latency increases rapidly as interconnect length increases for both Cu and GNR interconnects. However, the Cu interconnect has three to six times more latency than the GNR. In addition, we observe that the reading speed latency for the GNR interconnect is ~10.29 ns for wide temperature variations (150K to 450K), whereas the reading speed latency for the Cu interconnect varies between ~32 ns and 65 ns for the same temperature ranges. The above analysis is useful for the design of next generation, high-speed memories using different nano-interconnect materials.

Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates

  • Song, U-Seok;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Song, In-Gyeong;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.612-612
    • /
    • 2013
  • The band-gap opening in graphene is a key factor in developing graphene-based field effect transistors. Although graphene is a gapless semimetal, a band-gap opens when graphene is formed into a graphene nanoribbon (GNR). Moreover, the band-gap energy can be manipulated by the width of the GNR. In this study, we propose a site-specific synthesis of a width-tailored GNR directly onto an insulating substrate. Predeposition of a diamond-like carbon nanotemplate onto a SiO2/Si wafer via focused ion beam-assisted chemical vapor deposition is first utilized for growth of the GNR. These results may present a feasible route for growing a width-tailored GNR onto a specific region of an insulating substrate.

  • PDF

A Study of Dynamic Properties of Graphene-Nanoribbon Memory (그래핀 나노리본 메모리의 동적 특성에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2014
  • In this work, we investigate the operational properties of this proposed device in detail via classical MD simulations. The bi-stability of the GNF(Graphene Nano-flake) shuttle encapsulated in bi-layer GNR could be achieved from the increase of the attractive energy between the GNRs when the GNF approached the edges of the GNRs. This result showed the potential application of the nano-electromechanical GNR memory as a NVRAM.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Structural properties of vacancy defects, dislocations, and edges in graphene

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Kim, Young-Kuk;Ihm, Ji-Soon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.428-429
    • /
    • 2011
  • Recently, we performed ab initio total energy calculation and tight-binding molecular dynamics (TBMD) simulation to study structures and the reconstruction of native defects in graphene. In the previous study, we predicted by TBMD simulation that a double vacancy in graphene is reconstructed into a 555-777 composed of triple pentagons and triple heptagons [1]. The structural change from pentagon-octagon-pentagon (5-8-5) to 555-777 has been confirmed by recent experiments [2,3] and the detail of the reconstruction process is carefully studied by ab initio calculation. Pentagon-heptagon (5-7) pairs are also found to play an important role in the reconstruction of vacancy in graphene and single wall carbon nanotube [4]. In the TBMD simulation of graphene nanoribbon (GNR), we found the evaporation of carbon atoms from both the zigzag and armchair edges is preceded by the formation of heptagon rings, which serve as a gateway for carbon atoms to escape. In the simulation for a GNR armchair-zigzag-armchair junction, carbon atoms are evaporated row-by-row from the outermost row of the zigzag edge [5], which is in excellent agreement with recent experiments [2, 6]. We also present the recent results on the formation and development of dislocation in graphene. It is found that the coalescence of 5-7 pairs with vacancy defects develops dislocation in graphene and induces the separation of two 5-7 pairs. Our TBMD simulations also show that adatoms are ejected and evaporated from graphene surface due to large strain around 5-7 pairs. It is observed that an adatom wanders on the graphene surface and helps non-hexagonal rings change into stable hexagonal rings before its evaporation.

  • PDF

Peierls Instability and Spin Ordering in Graphene

  • Kim, Hyeon-Jung;Jo, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.204-204
    • /
    • 2012
  • Peierls instability and spin ordering of zigzag graphene nanoribbons (GNR) created on a fully hydrogenated graphene (graphane) are investigated as a function of their width using first-principles density-functional calculations within the generalized-gradient approximation. For the width containing a single zigzag C chain (N=1), we find the presence of a Peierls instability with a bond alternated structure. However, for width greater than N=1, the Peierls distortion is weakened or disappears because of the incommensurate feature of Fermi surface nesting due to the interaction of C chains. Instead, there exists the antiferromagnetic (AFM) spin ordering in which the edge states are ferromagnetically ordered but the two ferromagnetic (FM) edges are antiferromagnetically coupled with each other, showing that electron-lattice coupling and spin ordering in GNR are delicately competing at an extremely thin width of N=2. It is found that, as the width of GNR increases, the energy gain arising from spin ordering is enhanced, but the energy difference between the AFM and FM (where two edge states are ferromagnetically coupled with each other) orderings decreases.

  • PDF

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF