• 제목/요약/키워드: Graphene Composite

검색결과 317건 처리시간 0.025초

고강도 PMMA 및 나일론 - 산화그래핀 복합재료 섬유의 제조 및 특성평가 (Effect of Graphene Oxide on the Properties of Its Composite Fibers with PMMA and Nylon 6,6)

  • 황상하;이동욱;백종범;신현석;박영빈
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.1-4
    • /
    • 2011
  • 수정된 Hummer's 방법으로 제조된 산화그래핀(graphene oxide, GO)을 이용하여 PMMA와 Nylon 6,6에 분산시켜 각각 복합재료 섬유와 필름으로 제조하고 동적기계적 물성과 인장특성을 분석하였다. 동적기계적 분석과 인장 특성에서 GO-PMMA 복합재료 섬유는 GO의 효율적 기계적 물성 보강 효과를 확인 하였으나 Nylon 6,6 복합재료는 제조과정에서 사용된 포름산의 낮은 pH로 인해 산화그래핀의 분산안정성이 저하되어, 낮은 보강효율을 보임을 알 수 있었다.

Study on urea precursor effect on the electroactivities of nitrogen-doped graphene nanosheets electrodes for lithium cells

  • Kim, Ki-Yong;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.40-46
    • /
    • 2016
  • Nitrogen-atom doped graphene oxide was considered to prevent the dissolution of polysulfide and to guarantee the enhanced redox reaction of sulfur for good cycle performance of lithium sulfur cells. In this study, we used urea as a nitrogen source due to its low cost and easy preparation. To find the optimum urea content, we tested three different ratios of urea to graphene oxide. The morphology of the composites was examined by field emission scanning electron microscope. Functional groups and bonding characterization were measured by X-ray photoelectron spectroscopy. Electrochemical properties were characterized by cyclic voltammetry in an organic electrolyte solution. Compared with thermally reduced graphene/sulfur (S) composite, nitrogen-doped graphene/S composites showed higher electroactivity and more stable capacity retention.

A novel approach to bind graphene oxide to polyamide for making high performance Reverse Osmosis membrane

  • Raval, Hiren D.;Das, Ravi Kiran
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.613-623
    • /
    • 2017
  • We report the novel thin film composite RO membrane modified by graphene oxide. The thin film composite RO membrane was exposed to 2000 mg/l sodium hypochloride; thereafter it was subjected to different graphene oxide concentration ranging from 50 mg/l to 1000 mg/l in water. The resultant membrane was crosslinked with 5000 mg/l N-hydroxysuccinimide. The performance of different membranes were analysed by solute rejection and water-flux measurement. It was found that 100 mg/l graphene oxide exposure followed by 5000 mg/l N-hydroxysuccinimide treatment resulted in the membrane with the highest solute rejection of 97.78% and water-flux of 4.64 Liter per sqm per hour per bar g. The membranes were characterized by contact angle for hydrophilicity, scanning electron micrographs for surface morphology, energy dispersive X-Ray for chemical composition of the surface, Atomic force microscope for surface roughness, ATR-FTIR for chemical structure identification. It was found that the graphene oxide modified membrane increases the salt rejection performance after exposure to high-fouling water containing albumin. Highly hydrophilic, antifouling surface formation with the nanomaterial led to the improved membrane performance. Moreover, the protocol of incorporating nanomaterial by this post-treatment is simple and can be applied to any RO membrane after it is manufactured.

Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations

  • Sobhy, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.195-208
    • /
    • 2019
  • Based on a four-variable shear deformation shell theory, the free vibration analysis of functionally graded graphene platelet-reinforced composite (FGGPRC) doubly-curved shallow shells with different boundary conditions is investigated in this work. The doubly-curved shells are composed of multi nanocomposite layers that are reinforced with graphene platelets. The graphene platelets are uniformly distributed in each individual layer. While, the volume faction of the graphene is graded from layer to other in accordance with a novel distribution law. Based on the suggested distribution law, four types of FGGPRC doubly-curved shells are studied. The present shells are assumed to be rested on elastic foundations. The material properties of each layer are calculated using a micromechanical model. Four equations of motion are deduced utilizing Hamilton's principle and then converted to an eigenvalue problem employing an analytical method. The obtained results are checked by introducing some comparison examples. A detailed parametric investigation is performed to illustrate the influences of the distribution type of volume fraction, shell curvatures, elastic foundation stiffness and boundary conditions on the vibration of FGGPRC doubly-curved shells.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

전도성 고분자 PEDOT:PSS와 산화 그래핀 복합물 수소 가스 센서 (PEDOT:PSS and Graphene Oxide Composite Hydrogen Gas Sensor)

  • 맹성렬
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.69-73
    • /
    • 2018
  • The power law is very important in gas sensing for the determination of gas concentration. In this study, the resistance of a gas sensor based on poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate+graphene oxide composite was found to exhibit a power law dependence on hydrogen concentration at $150^{\circ}C$. Experiments were carried out in the gas concentration range of 30~180 ppm at which the sensor showed a sensitivity of 6~9% with a response and recovery time of 30s.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films

  • Kim, Sang Jin;Lee, Bora;Choi, Yong Seok;Kim, Philip;Hone, James;Hong, Byung Hee;Bae, Sukang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.301.1-301.1
    • /
    • 2016
  • We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF transferred graphene is found to be free from residues, and shows excellent charge carrier mobility as high as ${\sim}17,700cm^2/V{\cdot}s$ with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

  • PDF

산화방지 작용기를 함유한 산화 그래핀이 도입된 과불소화계 복합 막의 고분자 전해질 막 연료전지로의 응용 (Perfluorosulfonic Acid Composite Membranes Containing Antioxidant Grafted Graphene Oxide for Polymer Electrolyte Membrane Fuel Cell Applications)

  • 황인혁;김기현
    • 멤브레인
    • /
    • 제33권6호
    • /
    • pp.416-426
    • /
    • 2023
  • 본 연구에서는 산화 방지 특성이 있는 가리워진 아민기를 함유한 산화 그래핀(hindered amine grafted graphene oxide, HA-GO)을 합성하여 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조한 후 고분자 전해질 막 연료전지 시스템에 응용하였다. HA-GO는 4-아미노-2, 2, 6, 6-테트라메틸-4-피페리딘(4-amino-2, 2, 6, 6-tetramethyl piperidine)에 존재하는 아민기와 GO 표면에 존재하는 에폭시기의 개환 반응을 통해 제조하였으며, 합성된 HA-GO의 함량을 달리한 복합 막을 제조하여 순수 Nafion 막과 성능 특성을 비교하였다. HA-GO가 첨가된 복합 막은 Nafion 단일 막에 비해 기계적 물성, 화학적 안정성 및 수소이온 전도 특성이 향상되었다. 특히 HA-GO의 산화 방지 특성으로 인해 HA-GO가 첨가된 복합 막은 펜톤 평가(Fenton's test) 이후 수소이온 전도도의 유지 특성이 Nafion 단일 막에 비해 큰 폭으로 향상된 것을 확인할 수 있었다.