• Title/Summary/Keyword: Graph-Based Model

Search Result 489, Processing Time 0.027 seconds

Knowledge Recommendation Based on Dual Channel Hypergraph Convolution

  • Yue Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2903-2923
    • /
    • 2023
  • Knowledge recommendation is a type of recommendation system that recommends knowledge content to users in order to satisfy their needs. Although using graph neural networks to extract data features is an effective method for solving the recommendation problem, there is information loss when modeling real-world problems because an edge in a graph structure can only be associated with two nodes. Because one super-edge in the hypergraph structure can be connected with several nodes and the effectiveness of knowledge graph for knowledge expression, a dual-channel hypergraph convolutional neural network model (DCHC) based on hypergraph structure and knowledge graph is proposed. The model divides user data and knowledge data into user subhypergraph and knowledge subhypergraph, respectively, and extracts user data features by dual-channel hypergraph convolution and knowledge data features by combining with knowledge graph technology, and finally generates recommendation results based on the obtained user embedding and knowledge embedding. The performance of DCHC model is higher than the comparative model under AUC and F1 evaluation indicators, comparative experiments with the baseline also demonstrate the validity of DCHC model.

A XML Instance Repository Model based on the Edge-Labeled Graph (Edge-Labeled 그래프 기반의 XML 인스턴스 저장 모델)

  • Kim Jeong-Hee;Kwak Ho-Young
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.33-42
    • /
    • 2003
  • A XML Instance repository model based on the Edge-Labeled Graph is suggested for storing the XML instance in Relational Databases, This repository model represents the XML instance as a data graph based on the Edge-Labeled Graph, extracts the defined value based on the structure of data path, element, attribute, and table index table presented as database schema, and stores these values using the Mapper module, In order to support querry, XML repository model offers the module translating XQL which is a query language under XPATH to SQL, and has DBtoXML generator module restoring the stored XML instance. As a result, it is possible to represent the storage relationship between the XML instances and the proposed repository model in terms of Graph-based Path, and it shows the possibility of easy search of specific element and attribute information.

  • PDF

XML Repository Model based on the Edge-Labeled Graph (Edge-Labeled Graph를 적용한 XML 저장 모델)

  • 김정희;곽호영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.993-1001
    • /
    • 2003
  • A RDB Storage Model based on the Edge-Labeled Graph is suggested for store the XML instance in Relational Databases(RDB). The XML instance being stored is represented by Data Graph based on the Edge-Labeled Graph. Data Path Table, Element, Attribute, and Table Index Table values are extracted. Then Database Schema is defined, and the extracted values are stored using the Mapper. In order to support querry, Repository Model offers the translator translating XQL which is used as query language under XPATH, into SQL. In addition, it creates DBtoXML generator restoring the stored XML instance. As a result, storage relationship between the XML instance and proposed model structure can be expressed in terms of Graph-based Path, and it shows the possibility of easy search of random Element and Attribute information.

The Status Quo of Graph Databases in Construction Research

  • Jeon, Kahyun;Lee, Ghang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.800-807
    • /
    • 2022
  • This study aims to review the use of graph databases in construction research. Based on the diagnosis of the current research status, a future research direction is proposed. The use of graph databases in construction research has been increasing because of the efficiency in expressing complex relations between entities in construction big data. However, no study has been conducted to review systematically the status quo of graph databases. This study analyzes 42 papers in total that deployed a graph model and graph database in construction research, both quantitatively and qualitatively. A keyword analysis, topic modeling, and qualitative content analysis were conducted. The review identified the research topics, types of data sources that compose a graph, and the graph database application methods and algorithms. Although the current research is still in a nascent stage, the graph database research has great potential to develop into an advanced stage, fused with artificial intelligence (AI) in the future, based on the active usage trends this study revealed.

  • PDF

A Study on Research Trends of Graph-Based Text Representations for Text Mining (텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.37-47
    • /
    • 2013
  • Text Mining is a research area of retrieving high quality hidden information such as patterns, trends, or distributions through analyzing unformatted text. Basically, since text mining assumes an unstructured text, it needs to be represented as a simple text model for analyzing it. So far, most frequently used model is VSM(Vector Space Model), in which a text is represented as a bag of words. However, recently much researches tried to apply a graph-based text model for representing semantic relationships between words. In this paper, we survey research trends of graph-based text representation models for text mining. Additionally, we also discuss about future models of graph-based text mining.

Task Planning Algorithm with Graph-based State Representation (그래프 기반 상태 표현을 활용한 작업 계획 알고리즘 개발)

  • Seongwan Byeon;Yoonseon Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • The ability to understand given environments and plan a sequence of actions leading to goal state is crucial for personal service robots. With recent advancements in deep learning, numerous studies have proposed methods for state representation in planning. However, previous works lack explicit information about relationships between objects when the state observation is converted to a single visual embedding containing all state information. In this paper, we introduce graph-based state representation that incorporates both object and relationship features. To leverage these advantages in addressing the task planning problem, we propose a Graph Neural Network (GNN)-based subgoal prediction model. This model can extract rich information about object and their interconnected relationships from given state graph. Moreover, a search-based algorithm is integrated with pre-trained subgoal prediction model and state transition module to explore diverse states and find proper sequence of subgoals. The proposed method is trained with synthetic task dataset collected in simulation environment, demonstrating a higher success rate with fewer additional searches compared to baseline methods.

A Genetic Algorithm for Directed Graph-based Supply Network Planning in Memory Module Industry

  • Wang, Li-Chih;Cheng, Chen-Yang;Huang, Li-Pin
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.227-241
    • /
    • 2010
  • A memory module industry's supply chain usually consists of multiple manufacturing sites and multiple distribution centers. In order to fulfill the variety of demands from downstream customers, production planners need not only to decide the order allocation among multiple manufacturing sites but also to consider memory module industrial characteristics and supply chain constraints, such as multiple material substitution relationships, capacity, and transportation lead time, fluctuation of component purchasing prices and available supply quantities of critical materials (e.g., DRAM, chip), based on human experience. In this research, a directed graph-based supply network planning (DGSNP) model is developed for memory module industry. In addition to multi-site order allocation, the DGSNP model explicitly considers production planning for each manufacturing site, and purchasing planning from each supplier. First, the research formulates the supply network's structure and constraints in a directed-graph form. Then, a proposed genetic algorithm (GA) solves the matrix form which is transformed from the directed-graph model. Finally, the final matrix, with a calculated maximum profit, can be transformed back to a directed-graph based supply network plan as a reference for planners. The results of the illustrative experiments show that the DGSNP model, compared to current memory module industry practices, determines a convincing supply network planning solution, as measured by total profit.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.

Text-mining Based Graph Model for Keyword Extraction from Patent Documents (특허 문서로부터 키워드 추출을 위한 위한 텍스트 마이닝 기반 그래프 모델)

  • Lee, Soon Geun;Leem, Young Moon;Um, Wan Sup
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.335-342
    • /
    • 2015
  • The increasing interests on patents have led many individuals and companies to apply for many patents in various areas. Applied patents are stored in the forms of electronic documents. The search and categorization for these documents are issues of major fields in data mining. Especially, the keyword extraction by which we retrieve the representative keywords is important. Most of techniques for it is based on vector space model. But this model is simply based on frequency of terms in documents, gives them weights based on their frequency and selects the keywords according to the order of weights. However, this model has the limit that it cannot reflect the relations between keywords. This paper proposes the advanced way to extract the more representative keywords by overcoming this limit. In this way, the proposed model firstly prepares the candidate set using the vector model, then makes the graph which represents the relation in the pair of candidate keywords in the set and selects the keywords based on this relationship graph.

Graph-Based Word Sense Disambiguation Using Iterative Approach (반복적 기법을 사용한 그래프 기반 단어 모호성 해소)

  • Kang, Sangwoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • Current word sense disambiguation techniques employ various machine learning-based methods. Various approaches have been proposed to address this problem, including the knowledge base approach. This approach defines the sense of an ambiguous word in accordance with knowledge base information with no training corpus. In unsupervised learning techniques that use a knowledge base approach, graph-based and similarity-based methods have been the main research areas. The graph-based method has the advantage of constructing a semantic graph that delineates all paths between different senses that an ambiguous word may have. However, unnecessary semantic paths may be introduced, thereby increasing the risk of errors. To solve this problem and construct a fine-grained graph, in this paper, we propose a model that iteratively constructs the graph while eliminating unnecessary nodes and edges, i.e., senses and semantic paths. The hybrid similarity estimation model was applied to estimate a more accurate sense in the constructed semantic graph. Because the proposed model uses BabelNet, a multilingual lexical knowledge base, the model is not limited to a specific language.