• Title/Summary/Keyword: Graph cuts algorithm

Search Result 13, Processing Time 0.027 seconds

Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations

  • Park, Seongbeom;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • Enlargement of the lateral ventricles have been identified as a surrogate marker of neurological disorders. Quantitative measure of the lateral ventricle from MRI would enable earlier and more accurate clinical diagnosis in monitoring disease progression. Even though it requires an automated or semi-automated segmentation method for objective quantification, it is difficult to define lateral ventricles due to insufficient contrast and brightness of structural imaging. In this study, we proposed a fully automated lateral ventricle segmentation method based on a graph cuts algorithm combined with atlas-based segmentation and connected component labeling. Initially, initial seeds for graph cuts were defined by atlas-based segmentation (ATS). They were adjusted by partial volume images in order to provide accurate a priori information on graph cuts. A graph cuts algorithm is to finds a global minimum of energy with minimum cut/maximum flow algorithm function on graph. In addition, connected component labeling used to remove false ventricle regions. The proposed method was validated with the well-known tools using the dice similarity index, recall and precision values. The proposed method was significantly higher dice similarity index ($0.860{\pm}0.036$, p < 0.001) and recall ($0.833{\pm}0.037$, p < 0.001) compared with other tools. Therefore, the proposed method yielded a robust and reliable segmentation result.

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis (Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할)

  • Park, An-Jin;Kim, Jung-Whan;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.936-946
    • /
    • 2009
  • A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

Stereo Correspondence Using Graphs Cuts Kernel (그래프 컷 커널을 이용한 스테레오 대응)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.70-74
    • /
    • 2017
  • Given two stereo images of a scene, it is possible to recover a 3D understanding of the scene. This is the primary way that the human visual system estimates depth. This process is useful in applications like robotics, where depth sensors may be expensive but a pair of cameras is relatively cheap. In this work, we combined our interests to implement a graph cut algorithm for stereo correspondence, and performed evaluation against a baseline algorithm using normalized cross correlation across a variety of metrics. Experimental trials revealed that the proposed descriptor exhibited a significant improvement, compared to the other existing methods.

  • PDF

Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts (그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.572-587
    • /
    • 2008
  • The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.

Graph-based High-level Motion Segmentation using Normalized Cuts (Normalized Cuts을 이용한 그래프 기반의 하이레벨 모션 분할)

  • Yun, Sung-Ju;Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.671-680
    • /
    • 2008
  • Motion capture devices have been utilized in producing several contents, such as movies and video games. However, since motion capture devices are expensive and inconvenient to use, motions segmented from captured data was recycled and synthesized to utilize it in another contents, but the motions were generally segmented by contents producers in manual. Therefore, automatic motion segmentation is recently getting a lot of attentions. Previous approaches are divided into on-line and off-line, where ow line approaches segment motions based on similarities between neighboring frames and off-line approaches segment motions by capturing the global characteristics in feature space. In this paper, we propose a graph-based high-level motion segmentation method. Since high-level motions consist of repeated frames within temporal distances, we consider similarities between neighboring frames as well as all similarities among all frames within the temporal distance. This is achieved by constructing a graph, where each vertex represents a frame and the edges between the frames are weighted by their similarity. Then, normalized cuts algorithm is used to partition the constructed graph into several sub-graphs by globally finding minimum cuts. In the experiments, the results using the proposed method showed better performance than PCA-based method in on-line and GMM-based method in off-line, as the proposed method globally segment motions from the graph constructed based similarities between neighboring frames as well as similarities among all frames within temporal distances.

A Branch-and-Bound Algorithm for Finding an Optimal Solution of Transductive Support Vector Machines (Transductive SVM을 위한 분지-한계 알고리즘)

  • Park Chan-Kyoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.69-85
    • /
    • 2006
  • Transductive Support Vector Machine(TSVM) is one of semi-supervised learning algorithms which exploit the domain structure of the whole data by considering labeled and unlabeled data together. Although it was proposed several years ago, there has been no efficient algorithm which can handle problems with more than hundreds of training examples. In this paper, we propose an efficient branch-and-bound algorithm which can solve large-scale TSVM problems with thousands of training examples. The proposed algorithm uses two bounding techniques: min-cut bound and reduced SVM bound. The min-cut bound is derived from a capacitated graph whose cuts represent a lower bound to the optimal objective function value of the dual problem. The reduced SVM bound is obtained by constructing the SVM problem with only labeled data. Experimental results show that the accuracy rate of TSVM can be significantly improved by learning from the optimal solution of TSVM, rather than an approximated solution.

A Multi-Layer Graphical Model for Constrained Spectral Segmentation

  • Kim, Tae Hoon;Lee, Kyoung Mu;Lee, Sang Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.437-438
    • /
    • 2011
  • Spectral segmentation is a major trend in image segmentation. Specially, constrained spectral segmentation, inspired by the user-given inputs, remains its challenging task. Since it makes use of the spectrum of the affinity matrix of a given image, its overall quality depends mainly on how to design the graphical model. In this work, we propose a sparse, multi-layer graphical model, where the pixels and the over-segmented regions are the graph nodes. Here, the graph affinities are computed by using the must-link and cannot-link constraints as well as the likelihoods that each node has a specific label. They are then used to simultaneously cluster all pixels and regions into visually coherent groups across all layers in a single multi-layer framework of Normalized Cuts. Although we incorporate only the adjacent connections in the multi-layer graph, the foreground object can be efficiently extracted in the spectral framework. The experimental results demonstrate the relevance of our algorithm as compared to existing popular algorithms.

  • PDF

Segment-based Foreground Extraction Dedicated to 3D Reconstruction (3차원 복원을 위한 세그멘트 기반의 전경물체 추출)

  • Kim, Jeong-Hwan;Park, An-Jin;Jeong, Gi-Cheol
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.625-630
    • /
    • 2009
  • Researches of image-based 3D reconstruction have recently produced a number of good results, but they assumed that the accurate foreground to be reconstructed is already extracted from each input image. This paper proposes a novel approach to extract more accurate foregrounds by iteratively performing foreground extraction and 3D reconstruction in a manner similar to an EM algorithm on regions segmented in an initial stage, called segments. Here, the segments should preserve foreground boundaries to compensate for the boundary errors generated by visual hull, simple 3D reconstruction to minimize the computational time, and should also be composed of the small number of sets to minimize the user input. Therefore, we utilize image segmentation using the graph-cuts method, which minimizes energy function composed of data and smoothness terms, and the two methods are iteratively performed until the energy function is optimized. In the experiments, more accurate results of the foreground, especially in boundaries, were obtained, although the proposed method used a simple 3D reconstruction method.

  • PDF

A hand gesture recognition method for an intelligent smart home TV remote control system (스마트 홈에서의 TV 제어 시스템을 위한 손 제스처 인식 방법)

  • Kim, Dae-Hwan;Cho, Sang-Ho;Cheon, Young-Jae;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.516-520
    • /
    • 2007
  • This paper presents a intuitive, simple and easy smart home TV remote control system using the hand gesture recognition. Hand candidate regions are detected by cascading policy of the part of human anatomy on the disparity map image, Exact hand region is extracted by the graph-cuts algorithm using the skin color information. Hand postures are represented by shape features which are extracted by a simple shape extraction method. We use the forward spotting accumulative HMMs for a smart home TV remote control system. Experimental results show that the proposed system has a good recognition rate of 97.33 % for TV remote control in real-time.

  • PDF

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.