An algorithm that searches the general AND-OR graph is proposed. The convergence and the efficiency of the algorithm is examined and compared with an existing algorithm for the AND-OR graph. It is proved that the proposed algorithm is superior to the existing method both in the quality of the solution and the number of node expansions.
최근 들어 로봇 작업 계획기에 요구되는 중요한 기능 중의 하나가 이미 존재하는 컴포넌트 서비스들을 결합하여 새로운 서비스로 조합해낼 수 있는 계획 기능이다. 본 논문에서는 이러한 컴포넌트 서비스 조합을 위한 커널모듈로 개발된 휴리스틱 탐색 계획기인 JPLAN의 설계와 구현에 대해 설명한다. JPLAN은 효율적인 상태 공간 탐색을 위해 지역 탐색 알고리즘과 계획 그래프 휴리스틱을 이용한다. 본 논문에서 제안하는 지역 탐색 알고리즘인 EHC+는 FF 등의 상태 공간 계획기에 적용되어 높은 효율성을 보인 Enforced Hill-Climbing (EHC)을 확장한 것이다. EHC+는 EHC에 비해 소량의 추가적인 지역 탐색을 필요로 하지만 목표 상태까지 전체 탐색 양을 줄일 수 있고 더 짧은 계획을 얻을 수있다. 또한 본 본문에서는 대규모 상태 공간 탐색에 필수적인 효과적인 휴리스틱 추출 방법을 제안한다. 본 논문에서 제안하는 휴리스틱 추출방법은 Graphplan에서 계획 생성을 위해 처음 제안된 계획 그래프를 이용한다. 본 논문에서는 이러한 계획 그래프 기반의 다양한 휴리스틱들을 소개하고, 이들이 계획 생성에 미치는 효과를 실험을 통해 분석해본다.
원 상에 n개의 점들의 쌍 (a,b)이 존재할 때, 두 점 a와 b를 연결하는 직선 선분을 코드라고 한다. 이러한 n개의 코드들은 새로운 그래프 G를 정의한다. 각 코드는 G의 한 정점을 정의하고 두 코드가 교차하는 경우에 대응되는 정점들 간에 간선을 연결한다. 이렇게 만들어진 그래프 G를 원 그래프라고 부른다. 본 논문에서는 원 그래프에서 연결 요소를 찾는 문제를 다룬다. 연결 요소란 그래프 G의 부분 그래프 H로서 H안의 임의의 두 정점 간에 경로가 존재한다는 조건을 만족하는 최대 부분 그래프이다. 그래프 G가 인접 행렬로 주어지는 경우, 연결 요소를 찾는 문제는 깊이 우선 탐색 또는 너비 우선 탐색을 통해서 해결할 수 있다. 하지만 원 그래프의 경우에 코드들을 정의하는 n개의 점들의 쌍 정보만 입력으로 주어질 때, 인접 행렬을 구하는데 ${\Omega}(n^2)$ 시간이 소요됨을 알 수 있다. 본 논문에서는 인접 행렬을 만들지 않고 원 그래프의 연결 요소를 $O(n{\log}^2n)$시간에 찾는 알고리즘을 고안한다.
A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.
There are several methods which efficiencies of database are uprise. One of the well-known methods is that segments of database satisfying a query was rapidly accessed and processed. So if it is possible to search completely parallel multiple database segment types which satisfy a query, the response time of the query will be reduced. The matter of obtaining CPS(Completely Parallel Searchable) distribution without redundancy can be viewed as graph theoretic problem, and the operation of ring sum on the graph is used for CPS. In this paper, the parallel algorithm is proposed.
This paper considers simple polygon search problem. How many searchers find a mobile intruder that is arbitrarily faster than the searcher within polygon art gallery? This paper uses the visibility graph that is connected with edges for mutually visible vertices. Given visibility graph, we select vertex u that is conjunction ${\Delta}(G)$ in $N_G(v)$ for $d_G(v){\leq}4$. We decide 1-searchable if $1{\leq}{\mid}u{\mid}{\leq}2$ and 2-searchable if ${\mid}u{\mid}{\geq}3$. We also present searcher's shortest path. This algorithm is verified by varies 1 or 2-searchable polygons.
A collision avoidance algorithm based on a heuristic graph search and subgoals is presented. The joint angle space is quantized into cells. The evaluation function for a heuristic search is defined by the sum of the distance between the links of a manipulator and middle planes among the obstables and the distance between the end-effector and the subgoals on desired trajectory. These subgoals reduce the combinatorial explosion in the search space. This method enables us to avoid a dead-lock in searching. Its effectiveness has been verified by simulation studies.
개체 간의 상호 작용을 나타내기 위해 그래프 데이터 형태의 네트워크가 많은 애플리케이션에서 사용되고 있다. 최근에는 빅데이터 기술의 발달로 처리해야할 네트워크의 크기가 점점 커짐에 따라 하나의 서버에서 이를 처리하기 어려워졌기 때문에 분산 처리의 필요성 또한 증가하고 있다. 본 논문에서는 이러한 그래프 데이터가 분산 저장되어있는 환경에서 서브 그래프 탐색을 효율적으로 수행하기 위한 분산 처리시스템을 제안한다. 불필요한 탐색을 줄이기 위해 데이터의 통계정보를 활용해 확률적인 스코어링을 통해 탐색 순서를 정한다. 그래프 네트워크의 정점과 차수의 관계는 데이터의 종류에 따라 다른 특성을 보일 수 있기 때문에 여러 분포적 특성을 갖는 그래프에 대해 다른 스코어링 방법을 통해 불필요한 탐색을 줄이기 위한 스코어를 계산하여 탐색 순서를 결정한다. 결정된 순서에 따라 그래프가 분산 저장된 서버에서 순차적으로 탐색한다. 성능평가에서는 제안하는 기법의 우수성을 입증하기 위해 기존 기법과의 비교를 수행하였으며, 그 결과 기존 기법보다 탐색 시간이 약 3~10% 향상됨을 보였다.
최근 다양한 실세계의 복잡한 관계를 그래프의 형태로 구성하고 분석하는 다양한 연구들이 진행되고 있다. 특히 DBLP와 같은 컴퓨터 분야 문헌 데이터 시스템은 논문의 저자, 그리고 논문과 논문들이 서로 인용 관계로 표현되는 대표적인 그래프 데이터이다. 그래프 데이터는 저장 구조 및 표현이 매우 복잡하므로, 문헌 빅데이터의 검색과 분석, 그리고 시각화는 매우 어려운 작업이다. 본 논문에서는 문헌 빅데이터를 그래프의 형태로 시각화한 그래픽 사용자 인터페이스 도구, 즉 EEUM을 개발하였다. EEUM은 그래프 데이터를 시각적으로 표시하여 연결된 그래프 구조에 따라 문헌 데이터를 브라우징 하는 기능을 제공하며, 문헌 빅데이터에 대한 검색 및 관리, 분석이 가능하도록 구현하였다. 또한 EEUM을 DBLP가 제공하는 문헌 그래프 빅데이터에 적용하여 편리하게 검색, 탐색 및 분석하는 할 수 있음을 시연한다. EEUM을 이용하여 모든 연구 분야에서 영향력 있는 저자나 논문을 쉽게 찾을 수 있으며, 여러 저자와 논문 사이의 모든 관계를 한 눈에 볼 수 있는 등 복잡한 문헌 그래프 빅데이터의 검색 및 분석 도구로 편리하게 사용할 수 있다.
본 논문은 실시간 GPS 항법시스템에서 최단경로 탐색에 일반적으로 적용되고 있는 Dijkstra 알고리즘을 양방향 통행로(무방향그래프)로만 구성된 도로에 적용하고 문제점을 개선한 알고리즘을 제안하였다. Dijkstra 알고리즘은 방향 그래프에서 출발 노드부터 시작하여 그래프의 모든 노드에 대한 최단경로를 결정하기 때문에 알고리즘 수행에 많은 메모리가 요구되어 실시간으로 정보를 제공하지 못할 수도 있다. 이러한 문제점을 해결하고자, 본 논문에서는 무방향 그래프에 적합하도록 출발과 목적지 정점을 제외한 경로 정점들에 대해 최단경로를 설정하고, 출발 정점부터 시작하여 정점 유출 간선들에 대해 최단경로 설정 간선들과 일치하는 간선들을 모두 선택하는 방식으로 한 번에 다수의 정점들을 탐색하는 방법을 택하였다. 9개의 다양한 무방향 그래프에 제안된 알고리즘을 적용한 결과 모두 최단경로를 탐색하는데 성공하였다. 또한, 수행 속도 측면에서 Dijkstra 알고리즘보다 약 60%를 단축시키는 효과를 얻었으며, 알고리즘 수행에 필요한 메모리도 월등히 적게 요구되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.