• Title/Summary/Keyword: Graph Search

Search Result 294, Processing Time 0.034 seconds

Finding Rectilinear(L1), Link Metric, and Combined Shortest Paths with an Intelligent Search Method (지능형 최단 경로, 최소 꺾임 경로 및 혼합형 최단 경로 찾기)

  • Im, Jun-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.43-54
    • /
    • 1996
  • This paper presents new heuristic search algorithms for searching rectilinear r(L1), link metric, and combined shortest paths in the presence of orthogonal obstacles. The GMD(GuidedMinimum Detour) algorithm combines the best features of maze-running algorithms and line-search algorithms. The SGMD(Line-by-Line GuidedMinimum Detour)algorithm is a modiffication of the GMD algorithm that improves efficiency using line-by-line extensions. Our GMD and LGMD algorithms always find a rectilinear shortest path using the guided A search method without constructing a connection graph that contains a shortest path. The GMD and the LGMD algorithms can be implemented in O(m+eloge+NlogN) and O(eloge+NlogN) time, respectively, and O(e+N) space, where m is the total number of searched nodes, is the number of boundary sides of obstacles, and N is the total number of searched line segment. Based on the LGMD algorithm, we consider not only the problems of finding a link metric shortest path in terms of the number of bends, but also the combined L1 metric and Link Metric shortest path in terms of the length and the number of bands.

  • PDF

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

Korean Dependency Parsing Using Stack-Pointer Networks and Subtree Information (스택-포인터 네트워크와 부분 트리 정보를 이용한 한국어 의존 구문 분석)

  • Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.6
    • /
    • pp.235-242
    • /
    • 2021
  • In this work, we develop a Korean dependency parser based on a stack-pointer network that consists of a pointer network and an internal stack. The parser has an encoder and decoder and builds a dependency tree for an input sentence in a depth-first manner. The encoder of the parser encodes an input sentence, and the decoder selects a child for the word at the top of the stack at each step. Since the parser has the internal stack where a search path is stored, the parser can utilize information of previously derived subtrees when selecting a child node. Previous studies used only a grandparent and the most recently visited sibling without considering a subtree structure. In this paper, we introduce graph attention networks that can represent a previously derived subtree. Then we modify our parser based on the stack-pointer network to utilize subtree information produced by the graph attention networks. After training the dependency parser using Sejong and Everyone's corpus, we evaluate the parser's performance. Experimental results show that the proposed parser achieves better performance than the previous approaches at sentence-level accuracies when adopting 2-depth graph attention networks.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

Query Expansion based on Word Sense Community (유사 단어 커뮤니티 기반의 질의 확장)

  • Kwak, Chang-Uk;Yoon, Hee-Geun;Park, Seong-Bae
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1058-1065
    • /
    • 2014
  • In order to assist user's who are in the process of executing a search, a query expansion method suggests keywords that are related to an input query. Recently, several studies have suggested keywords that are identified by finding domains using a clustering method over the documents that are retrieved. However, the clustering method is not relevant when presenting various domains because the number of clusters should be fixed. This paper proposes a method that suggests keywords by finding various domains related to the input queries by using a community detection algorithm. The proposed method extracts words from the top-30 documents of those that are retrieved and builds communities according to the word graph. Then, keywords representing each community are derived, and the represented keywords are used for the query expansion method. In order to evaluate the proposed method, we compared our results to those of two baseline searches performed by the Google search engine and keyword recommendation using TF-IDF in the search results. The results of the evaluation indicate that the proposed method outperforms the baseline with respect to diversity.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

Evolutionary Design for Multi-domain Engineering System - Air Pump

  • Seo, Ki-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • This paper introduces design method for air pump system using bond graph and genetic programming to maximize outflow subject to a constraint specifying maximum power consumption. The air pump system is a mixed domain system which includes electromagnetic, mechanical and pneumaticelements. Therefore an appropriate approach for a better system for synthesis is required. Bond graphs are domain independent, allow free composition, and are efficient for classification and analysis of models, Genetic programming is well recognized as a powerful tool for open-ended search. The combination of these two powerful methods for evolution of multi-domain system, BG/GP, was tested for redesign of air pump system.

  • PDF

Dynamic Adaptive Model for WebMedia Educational Systems based on Discrete Probability Techniques (이산 확률 기법에 기반한 웹미디어 교육 시스템을 위한 동적 적응 모델)

  • Lee, Yoon-Soo
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.9
    • /
    • pp.921-928
    • /
    • 2004
  • This paper proposed dynamic adaptive model based on discrete probability distribution function and user profile in web based HyperMedia educational systems. This modelsrepresents application domain to weighted direction graph of dynamic adaptive objects andmodeling user actions using dynamically approach method structured on discrete probability function. Proposed probabilitic analysis can use that presenting potential attribute to useractions that are tracing search actions of user in WebMedia structure. This approach methodscan allocate dynamically appropriate profiles to user.

  • PDF

Improved Concept-base Search System Using HITS algorithm on Conceptual Graph (HITS알고리즘을 적용한 개념그래프 기반검색시스템의 성능개선)

  • 배환국;박호성;이상준;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.470-472
    • /
    • 2003
  • 본 논문에서는 개념 그래프 기반 검색 시스템의 검색의 성능을 개선시키고자 Hits 알고리즘을 적용하였다. 기존 개념 그래프 기반 검색 시스템의 anchor text분석을 통하여 개념을 추출하고 있는 시스템에서 더 나아가 하이퍼 링크의 선호도의 특성을 살려 하이퍼링크에 문서가 얼마나 연결되어 있는지, 참조하고 있는지에 따라 해당 검색된 문서들의 중요도를 찾아서 순위를 매기는 실험을 하였다. 종래에는 해당 검색어의 빈도순으로 개념의 결과를 나타내 주었는데, 본 시스템 구현 후에 랭킹알고리즘을 적용하여 해당검색에 유용한 정보를 가지고 있는 페이지들(authorities)과 유용한 정보를 보유하고 있는 페이지의 링크를 보유하고 있는 페이지들(hubs)를 각각 순위 순으로 보여주게 되었다. 그리하여 사용자는 실제 검색시에 개념상으로 분류된 문서 중에 중요도가 높은 문서를 사용자에게 우선으로 접하게 되었으며, hub어 의해서 중요도가 높은 문서를 한눈에 볼 수도 있을 뿐 아니라, anchor text 어서 나타나지 않은 중요한 정보를 가진 문서도 검색할 수 있었다.

  • PDF

Experimental Evaluation of PageRank/BFS Queries on Distributed Graph Processing Systems (최신 분산 그래프 처리 시스템에서의 PageRank/BFS 질의 처리 성능 평가)

  • Lee, Kyeong-Jun;Kim, Hyeonji;Lee, Yukyoung;Lee, Juneyoung;Kim, Kangsu;Han, Wook-Shin
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.826-828
    • /
    • 2017
  • 그래프는 객체와 객체 간의 관계를 표현하는 데에 있어 효과적인 데이터 표현 방법이다. 그래프 데이터는 웹 그래프, 사회 관계망 서비스, 신약 개발, 생명정보학 등의 다양한 분야에서 활용되고 있으며, 그래프 마이닝 응용에서 활용되기 위한 효율적인 처리 기술을 필요로 한다. 최근까지 그래프 데이터의 처리 및 분석을 위한 많은 시스템들이 개발되었다. 본 논문에서는 최신 분산 그래프 처리 시스템 중에서 대표적인 그래프 분석 질의인 페이지랭크(pagerank)와 너비 우선 탐색(breadth first search)를 수행하고 시스템의 성능을 평가한다.