• Title/Summary/Keyword: Granulite

Search Result 22, Processing Time 0.022 seconds

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF

Granulites of northern korea (한반도 북부의 백립암)

  • Glebovitsky, V.A.;Sedova, I.S.;Bushmin, S.A.;Vapnik, Ye.A.;Buiko, A.K.
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.196-219
    • /
    • 1994
  • Granulite complexes in northern (the Nangnim block), eastern (ther Kimchaek zone of the Macheonryong belt) and southern (separate windows among upper Proterozoic structure such as the Wonsan, Nampo and Haeju granulites) parts of the Northern Korea are studied. Multistage deformations, metamorphic and migmatitic events, and granite formations are recognized in these granulite complexes. Mineral thermobarometry and fluid inclusion investigationss are used to establish the P-T evolutionary trends during prograde and retrograde metamorphic events. The peak metamorphism of granulites is characterized by temperature near $800^{\circ}C$ and pressure near 5.5-6 kb. Retrograde evolution includes cooling at constant pressure or with variable pressure ranging up to 7-8 kb. This P-T change corresponds to the transition from high to moderate or low geothermal gradient. The subsequent cooling is ac-companied by significant decompression to 3-4 kb.

  • PDF

Occurrences of Fe-Ti Ore Bodies and Mafic Granulite in the Sancheong Anorthosites, Korea (산청회장암체 내 철-티탄 광체와 고철질 백립암의 산상)

  • Kim, Jong-Sun;Ahn, Seong-Ho;Cho, Hyeong-Seong;Song, Cheol-Woo;Son, Moon;Ryoo, Chung-Ryul;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.115-135
    • /
    • 2011
  • Fe-Ti ore bodies and mafic granulite occur in the Sancheong anorthosites, south Korea. In order to determine their petrogenetic relationship and to classify the Fe-Ti ore bodies, we have synthetically analyzed characteristics in the field, such as distribution and occurrence, and petrologic features through detailed outcrop sketches. The ore bodies are divided into the regular vein dike- and irregular veinlet swarm types, according to their characteristics of contact with the anorthosites and internal structures. The former shows the tabularly intrusive contact and the pervasively ductile-sheared interior, while the latter, the irregularly tortuous contact and the almost intact interior. Most of the ore bodies are cross-cutting the foliation of the anorthosites and possess abundant anorthositic xenoliths, indicating their intrusion after the formation of foliation in the anorthosites. The mafic granulite, also bearing abundant anorthositic xenoliths, shows interior foliations nearly parallel to intrusion contact, and has abundant ilmenites approximately the same as those of the Fe-Ti ore bodies in chemical composition. And its intrusion into adjacent anorthosites is observed and the intrusion is finally changed into an irregular veinlet swarm type ore body. It is, thus, interpreted that the granulite in the study area was the host material of Fe-Ti ore bodies.

Granulite xenoliths in porphyroblastic gneiss from Mt. Jiri area, SW Sobaegsan massif, Korea (소백산육괴 서남부 지리산지역의 반상변정질 편마암에서 산출되는 백립암질 포획암)

    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.34-45
    • /
    • 1999
  • Mafic granulite xenoliths are found in precambrian porphyroblastic gneiss of the Mt. Jiri area, SW Sobaegsan massif, Korea. The xenoliths are rounded to ellipsoidal in shape, 50-100 cm in length and coarse-grained with granoblastic and foliated texture. The xenoliths consist of orthopyroxene, garnet, biotite, plagioclase, quartz, ilmenite and secondary orthoamphibole. Orthopyroxene is mostly resorbed and rimmed by coronitic orthoamphiboles. Garnets occur as porphyblasts and are zoned with higher pyrope content in cores than in rims. Geothermo-barometry results yield conditions of about $800-850^{\circ}C$, 6 kb and $500^{\circ}C$, 4 kb for early and retrograde stages of equilibration, respectively. According to available geochronological data, it is suggested that the granulite facies metamorphism occurred prior to 2.1-1.9Ga and that the area was superimposed by the high-grade (over $600-700^{\circ}C$) metamorphism between 1.9-1.7Ga, followed by cooling during uplift.

  • PDF

Granulite-facies metamorphism and P-T evolutionary path of cordierite gneisses in the Cheongpyeong-Yangpyeong area (청평-양평 지역에 분포하는 근청석 편마암의 백립암상 변성작용과 P-T 진화 경로)

  • 조윤호;조문섭;이승렬
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.52-65
    • /
    • 1996
  • Precambrian metamorphic rocks of the Cheongpyeong-Yangpyeong area, central Gyeonggi massif, comprise gneiss, schist, quartzite and amphibolite. Mineral, assemblages of pelitic gneisses are characterized by biotite + cordierite + garnet + sillimanite + K-feldspar + plagioclase + quartz together with minor muscovite, spinel and corundum, and represent the granulite facies metamorphism. In particular, kyanite occurs as fine-grained relict phase inside plagioclase of three gneiss samples. Metamorphic conditions are estimated from garnet-biotite and garnet-cordierite geothermometers in conjunction with garnet-$Al_2SiO_5$-quartz-plagioclase (GASP) and garnet-rutile-$Al_2SiO_5$-ilmenite (GRAIL) geobarometers. They are 700-$850^{\circ}C$ and 3.2-8.3 kbar, and 580-$690^{\circ}C$ and 2.1-3.2 kbar, respectively, when the core and rim compositions of garnet are use. Garnet of the GASP assemblage increases rimward in the Fe and Mn contents but decreases in the Mg content, whereas its Ca content does not vary significantly. Together with the occurrence of relict kyanite and the result of P-T estimates, compositional zoning patterns of garnet indicate a clockwise P-T history. Moreover, the preservation of high-pressure minerals such as kyanite in plagiocalse, even after the medium-pressure granulite facies metamorphis, suggests a rapid change in P-T conditions.

  • PDF

Petrology and Geochemistry of Jurassic Daejeon and Nonsan Granitoids in the Ogcheon Fold Belt, Korea (옥천(沃川) 변성대(變成帶)에 분포하는 쥬라기(紀) 대전(大田) 및 논산(論山) 화강암류(花崗岩類)의 암석지화학적(岩石地化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.179-195
    • /
    • 1984
  • The Jurassic Daejeon and Nonsan granitoids are "S-type" syntectonic calc-alkaline two-mica monzogranite and granodiorite, respectively. With evidences of high CaO, $Al_2O_3$, LIL/HFS elements, total REE, (Ce/Yb)N and initial ($^{87}Sr/^{88}Sr$) ratio, and no significant Eu anomaly, the primary magmas for the Daejeon and Nonsan granitic rocks are derived from partial melting of the Precambrian granulite (e.g. grey gneisses). But those Jurassic granitoids crystallised from different chemical characteristics of parental magmas which is mainly due to varying degree of partial melting of the granulite (crustal anatexis). The absence of significant anomalous Eu($Eu/Eu^*=O.82{\sim}1.00$) in the Daejeon and Nonsan granitoids could indicate that feldspars, mainly plagioclase, did not separate from the magmas. The parental hydrous magmas could not rise appreciably above their source region before crystallisation. The Jurassic granitoids may be resulted by closing-collision situation and belong to the Hercynotype (Pitcher 1979) such as compressive ductile regime of an intracontinental orogen.

  • PDF

Paleoproterozoic low-pressure metamorphism and crustal evolution in the northeastern Yeongnam Massif, Korea

  • Kim, Jeong-Min
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.43-60
    • /
    • 2006
  • The Yeongnam Massif, one of Precambrian basements in Korean Peninsula, is characterized by widespread occurrence of low-pressure/high-temperature (LP/HT) schists and gneisses accompanying extensive anatexis and granitic magmatism. Metapelitic mineral assemblages define three progressive metamorphic zones pertinent to low-pressure facies series: cordierite, sillimanite and garnet zones with increasing temperature. Metamorphic grade ranges from lower amphibolite to lower granulite facies and metamorphic conditions reach ca. 750-800 C and 4-6 kbar in migmatitic gneisses. Migmatitic gneisses are prominent in the sillimanite and garnet zones. Textural and petrogenetic relationshipsin leucosome suggest that migmatitic gneiss is the product of anatexis of metasedimentary rocks. The migmatite formation during the prograde metamorphism is governed initially by fluid-present melting and subsequently by biotite-dehydration melting. The large amount of leucosomes in the sillimaniteand garnet zones can be explained by the fluid-present molting possibly triggered by an external supply of aqueous fluid. Field and geochronologic relationships between leucogranites and migmatitic gneisses further suggest that leucogranite has providedfluid and heat required for widespread migmatization.

  • PDF

Metamorphism of gneiss complex in the Paju-Gimpo area, northwestern Gyeonggi massif, Korea (경기육괴 북서부의 파주-김포지역에 분포하는 편마암복합체의 변성작용)

  • Ahn, Kun-Sang;Park, Young-Seog;Kim, Cheong-Bin;Chen, Jiangfeng
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.177-189
    • /
    • 1998
  • Proterozoic gneisss complex of the Paju-Gimpo area, Northwestern Gyeonggi Massif, consists of mainly gneiss and schist with locally intercalated quartzite and metamorphic calcareous rocks. Mineral assemblages of the gneiss and schist are classified into two type: sillimanite free (garnet zone) and sillimanite bearing (sillimanite zone) assemblages. In the Goyang area, Kyanite occurs as metastable relict grain in two gneiss samples, in which sillimanite, garnet, biotite, K-feldspar and plagioclase occur. Cordierite bearing mineral assemblages of gneiss are biotite+garnet+sillimanite+cordierite+plagioclase+quartz ($\pm$K-feldspar, muscovite), and represent the upper amphibolite or granulite facies metamorphism. The metamorphic complex has experienced two different regional metamorphism. The prograde metamorphism is a medium-pressure type characteries by kyanite. The peak metamorphic P-T condition of the prograde metamorphism calculated from the kyanite bearing rock is 7.0~9.4 kb and $718~778^{\circ}C$. The retrograde metamorphism, after the prograde metamorphism, is the low-pressure type characteries by occurrence of cordierite. The peak metamorphic P-T condition of later calculated from the cordierite bearing rock is 3.6~5.5 kb and $750~889^{\circ}C$. Together with the occurrence of relict kyanite, garnet+biotite+plagioclase assemblage as relict in the cordierite, and the result of estimated P-T metamorphic conditions indicate a clockwise P-T path.

  • PDF

Petrology of Charnockite in Sancheong Area (산청지역에 분포하는 챠노카이트의 암석학적 연구)

  • Lee, Sang-Won;Ock, Soo-Seck;Lee, Young-Taek
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.