• Title/Summary/Keyword: Grand ensemble

Search Result 11, Processing Time 0.033 seconds

Predictability for Heavy Rainfall over the Korean Peninsula during the Summer using TIGGE Model (TIGGE 모델을 이용한 한반도 여름철 집중호우 예측 활용에 관한 연구)

  • Hwang, Yoon-Jeong;Kim, Yeon-Hee;Chung, Kwan-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.287-298
    • /
    • 2012
  • The predictability of heavy precipitation over the Korean Peninsula is studied using THORPEX Interactive Grand Global Ensemble (TIGGE) data. The performance of the six ensemble models is compared through the inconsistency (or jumpiness) and Root Mean Square Error (RMSE) for MSLP, T850 and H500. Grand Ensemble (GE) of the three best ensemble models (ECMWF, UKMO and CMA) with equal weight and without bias correction is consisted. The jumpiness calculated in this study indicates that the GE is more consistent than each single ensemble model. Brier Score (BS) of precipitation also shows that the GE outperforms. The GE is used for a case study of a heavy rainfall event in Korean Peninsula on 9 July 2009. The probability forecast of precipitation using 90 members of the GE and the percentage of 90 members exceeding 90 percentile in climatological Probability Density Function (PDF) of observed precipitation are calculated. As the GE is excellent in possibility of potential detection of heavy rainfall, GE is more skillful than the single ensemble model and can lead to a heavy rainfall warning in medium-range. If the performance of each single ensemble model is also improved, GE can provide better performance.

A Statistical-Mechanical Study on Multilayer Adsorptions and the BET Adsorption Equation (다분자층 흡착과 BET 흡착식의 통계 역학적 고찰)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.280-289
    • /
    • 2006
  • Multilayer adsorptions and BET adsorption are analyzed statistical-mechanically. Which ensemble is selected for the analysis is unimportant, because each ensemble yields the same results. However, the amount of mathematical manipulations and the matter of convenience vary from ensemble to ensemble. Hence, multilayer adsorptions and BET adsorption are examined using a canonical and a grand canonical ensembles, and an ensemble of subsystems. Also, the characteristics of multilayer and BET adsorptions are delineated.

A New Method on the Derivation of the Thermodynamic Quantities for a System Represented by the Canonical Ensemble (Canonical Ensemble 로 代表된 系의 에너지 分布則 및 熱力學的牀態量의 道出에關하여)

  • Kim Shoon-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.3-8
    • /
    • 1954
  • Fowler obtained thermodynamic quantities assuming the theory which could be derived by representing the system with microcanonical ensemble, in order to introduce the temperature T of the system proper, he considered the combined systems which are composed of the system proper and another arbitrary system that is in thermal contact with the former, and represented the combined system by a microcanonical ensemble, here, he used the steepest descent method in his calculation. This Fowler's treatment is not only unsatisfactory at the point of theoretical view but also he could not make the formulation of free energy of Helmholtz's so that this formular was forced to be assumed. From the point of Quantum Statistical Mechanical view, the materially closed system which is in an equilibrium state with the temperature T is best represented by canonical ensemble. At the actual derivation of the distribution law and thermodynamic quantities, however, in order to avoid the difficulty of calculation Tolman proceeded his calculation either representing the system proper by the grand-canonical ensemble or adding a certain limitation.

  • PDF

Predictability Study of Snowfall Case over South Korea Using TIGGE Data on 28 December 2012 (TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구)

  • Lee, Sang-Min;Han, Sang-Un;Won, Hye Young;Ha, Jong-Chul;Lee, Jeong-Soon;Sim, Jae-Kwan;Lee, Yong Hee
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • This study compared ensemble mean and probability forecasts of snow depth amount associated with winter storm over South Korea on 28 December 2012 at five operational forecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of difference in predicted snow depth at each Ensemble Prediction System (EPS) was investigated by using THe Observing system Research and Predictability EXperiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passing through South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10 cm over southern region of South Korea In this case study, ECMWF showed best prediction skill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistently enhancing the indications present in ensemble mean snow depth forecasts from 7-day lead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincided with observation frequencies. And this snowfall case could be predicted from 5-day lead time by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition, the cause of good performances at ECMWF EPS in predicted snow depth amounts was due to outstanding prediction ability of forming inversion layer with below $0^{\circ}C$ temperature in low level (below 850 hPa) according to $35^{\circ}N$ at 1-day lead time.

Monte Carlo Simulation on the Adsorption Properties of Methane in Zeolite L

  • 문성두;Yoshimori Miyano
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.291-295
    • /
    • 1997
  • The adsorption of methane in K+ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. The simulation results agreed fairly well with experimental ones. All methane molecules were located in the main channel, and the average potential of sorbate molecule was almost constant regardless of average number of molecules per unit cell and the amounts sorbed in zeolite.

Monte Carlo Simulation on Adsorption Properties of Benzene, Toluene, and p-Xylene in MCM-41

  • Moon, Sung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2553-2559
    • /
    • 2012
  • The adsorption properties of benzene, toluene, p-xylene in MCM-41 with heterogeneous and cylindrical pore were studied using grand canonical ensemble Monte Carlo simulation. The simulated isotherms were compared with experimental ones, and the different adsorption behaviors in MCM-41 with pore diameters of 2.2 and 3.2 nm were investigated. The simulated adsorption amounts above the capillary-condensation pressure agreed with the experimental ones. The simulation results showed that most molecular planes were nearly parallel to the pore axis. This orientation was not affected by the molecular position in the pore. The molecular planes were nearly parallel to the pore surface for the adsorbate molecules close to the pore wall, and the molecules in the MCM-41 with the pore diameter of 3.2 nm were ordered along the pore axis.

Statistical Thermodynamical Properties and Adsorption Characteristics of Heavy Water (중수의 열역학적 성질과 흡착특성)

  • Chang-Hyun Jho;Hyungsuk Park;Seihun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.285-293
    • /
    • 1971
  • The statistical thermodynamical properties of heavy water are calculated according to the transient state theory of significant liquid structure. The calculated values are shown to be in good agreement with the observed ones. The grand canonical ensemble partition function for the adsorbed phase of heavy water on graphite surface is derived using the theory. The adsorption isotherm, the surface pressure, the molar entropy and the molar internal energy for the adsorbed phase and then the molar heat of adsorption are calculated according to the derived partition function. The thermodynamic properties of the adsorbed water are also calculated and the results are compared with those of heavy water and discussed in view of the experimentally observed phenomena.

  • PDF

Monte Carlo Simulation on the Adsorption Properties of Ethane and Propane in Zeolite L (제올라이트 L 중 에탄과 프로판의 흡착성질에 대한 몬테칼로 시뮬레이션)

  • Moon, Sung Doo;Choi, Dai Ung;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 1998
  • The adsorption of ethane and propane in $K^{+}$ ion exchanged zeolite L has been studied using grand canonical ensemble Monte Carlo simulation. $CH_3$ and $CH_2$ groups of sorbate molecule were considered as pseudoatoms in calculation of potential, and the bond lengths and bond angles within a molecule were fixed during simulation. Average number of molecules per unit cell, number density of molecules in zeolite, distribution of molecules per unit cell, average potential per sorbate molecule, and isosteric heats of adsorption were calculated, and these results were compared with experimental results. For ethane the simulation results agreed considerably well with experimental ones over a wide range of temperature. The average potential of sorbate molecule decreased slowly with the increase of amounts sorbed in zeolite.

  • PDF

Theoretical Approach to Physical Adsorption of Gases on Solid Surfaces (고체 표면 위의 기체 흡착에 관한 이론적 연구)

  • Chang, Sei-Hun;Pak, Hyung-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.97-107
    • /
    • 1970
  • The grand canonical ensemble partition function for the adsorbed phase of gases on solid surfaces is derived according to the transient state theory of significant liquid structure. The derived adsorption isotherms from the partition function for argon, nitrogen and benzene adsorbed on various adsorbents are in good agreement with the observed values. The surface pressure, the molar entropy, the molar internal energy and the molar heat of adsorption are calculated for benzene adsorbed on graphite. The molar entropy is minimum at near the pressure where a close packed monolayer is formed. The method of parameter determination is illustrated.

  • PDF

Covalent Organic Frameworks for Extremely High Reversible $CO_2$ and $H_2$ Uptake Capacity : A Multiscale Simulation Approach (우수한 가역적 이산화탄소 및 수소 저장성능을 가지는 공유결합성 유기적 골격구조체에 관한 다중스케일 접근법을 이용한 연구)

  • Choi, Yoon Jeong;Choi, Jung Hoon;Choi, Kyung Min;Kang, Jeung Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.113.2-113.2
    • /
    • 2010
  • We report that the novel covalent organic frameworks (COFs) are capable of reversibly providing an extremely high uptake capacity of carbon dioxide and hydrogen at room temperature. These COFs are designed based on the multiscale simulations approach via the combination of ab initio calculations and force-field calculations. For this goal, we explore the adsorption sites of carbon dioxide and hydrogen on COFs, their porosity, as well as carbon dioxide adsorption isotherms. We identify the binding sites and energies of $CO_2$ on COFs using ab initio calculations and obtain the carbon dioxide adsorption isotherms using grand canonical ensemble Monte Carlo calculations. Moreover, the calculated adsorption isotherms are compared with the experimental values in order to build the reference model in describing the interactions between the $CO_2/H_2$ and the COFs and in predicting the $CO_2$ and $H_2$ adsorption isotherms of COFs. Finally, we design three new COFs, 2D COF-05, 3D COF-05 (ctn), and 3D COF-05 (bor), for the high capacity $CO_2/H_2$ and $H_2$ storage.

  • PDF