• Title/Summary/Keyword: Gram positive

Search Result 1,524, Processing Time 0.03 seconds

Characterization of Miniimonas sp. S16 isolated from activated sludge (활성슬러지로부터 분리된 Miniimons sp. S16 세균의 특성)

  • Koh, Hyeon-Woo;Kim, Hongik;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.242-247
    • /
    • 2019
  • Biological factors (e.g. microorganism activity) in wastewater treatment plant (WWTP) play essential roles for degradation and/or removal of organic matters. In this study, to understand the microbial functional roles in WWTP, we tried to isolate and characterize a bacterial strain from activated sludge sample. Strain S16 was isolated from the activated sludge of a municipal WWTP in Daejeon metropolitan city, the Republic of Korea. The cells were a Gram-stain-positive, non-motile, facultative anaerobe, and rod-shaped. Strain S16 grew at a temperature of $15{\sim}40^{\circ}C$ (optimum, $30^{\circ}C$), with 0~9.0% (w/v) NaCl (optimum, 1.0~2.0%), and at pH 5.5~9.0 (optimum, pH 7.0~7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S16 was most closely related to the unique species Miniimonas arenae NBRC $106267^T$ (99.79%, 16S rRNA gene sequence similarity) of the genus Miniimonas. The cell wall contained alanine, glutamic acid, serine, and ornithine. Although the isolation source of the type strain NBRC $106267^T$ which considered as a marine microorganism is sea sand, that of strain S16 is terrestrial environment. It might raise an ecological question for habitat transition. Therefore, comparative genome analysis will be valuable investigation for shedding light on their potential metabolic traits and genomic streamlining.

Evaluation of the Bioactivity of Polygonium tinctorium Leaf: Potential Clinical Uses (쪽잎의 생리활성 평가)

  • Sung, Hwa-Jung;Choi, Ok-Ja;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.52-59
    • /
    • 2019
  • The leave of Polygonum tinctorium (LPT) have been used for centuries as a traditional medicine and as a food ingredient and natural dye. The aim of the current study was to develop high-value added products using LPT. Hot water extract (HWE) and ethanol extract (EE) of LPT were prepared, respectively, and their bioactivity was evaluated. The extraction ratio for the HWE was 27.6%, which was two-fold higher than that of the EE. The contents of total polyphenol in the HWE and total sugar in the EE were 51.2 mg/g and 297.8 mg/g, respectively. The total flavonoid and reducing sugar contents were similar in the extracts, irrespective of the extraction solvent. The HWE did not show antimicrobial activity in a disc-diffusion assay, but the EE showed strong growth inhibition against gram-positive bacteria. The EE exhibited stronger DPPH and ABTS radical scavenging activities and reducing power than those of the HWE. The HWE was particularly effective as a scavenger of nitrite ($RC_{50}$ of $6.0{\mu}g/ml$). In an antithrombosis activity assay, the EE showed significant anticoagulation activity as determined by an extended blood coagulation time (thrombin time, prothrombin time, and activated partial thromboplastin time), in addition to platelet aggregation activity. The HWE also showed platelet aggregation inhibitory activity. This report provides the first evidence of antithrombosis activities of LPT. Our results suggest that LPT has potential as a new antioxidant and antithrombosis agent.

Quantitative Risk Assessment of Listeria monocytogenes Foodborne Illness Caused by Consumption of Cheese (위해평가를 통한 치즈에서의 Listeria monocytogenes 식중독 발생 가능성 분석)

  • Ha, Jimyeong;Lee, Jeeyeon
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.552-560
    • /
    • 2020
  • Listeria monocytogenes is a highly pathogenic gram-positive bacterium that is easily isolated from cheese, meat, processed meat products, and smoked salmon. A zero-tolerance (n=5, c=0, m=0/25 g) criteria has been applied for L. monocytogenes in cheese meaning that L. monocytogenes must not be detected in any 25 g of samples. However, there was a lack of scientific information behind this criteria. Therefore, in this study, we conducted a risk assessment based on literature reviews to provide scientific information supporting the baseline and to raise public awareness of L. monocytogenes foodborne illness. Quantitative risk assessment of L. monocytogenes for cheese was conducted using the following steps: exposure assessment, hazard characterization, and risk characterization. As a result, the initial contamination level of L. monocytogenes was -4.0 Log CFU/g in cheese. The consumption frequency of cheese was 11.8%, and the appropriate probability distribution for amount of cheese consumed was a Lognormal distribution with an average of 32.5 g. In conclusion, the mean of probabilities of foodborne illness caused by the consumption of cheese was 5.09×10-7 in the healthy population and 4.32×10-6 in the susceptible population. Consumption frequency has the biggest effect on the probability of foodborne illness, but storage and transportation times have also been found to affect the probability of foodborne illness; thus, management of the distribution environment should be considered important. Through this risk assessment, scientific data to support the criteria for L. monocytogenes in cheese could be obtained. In addition, we recommend that further risk assessment studies of L. monocytogenes in various foods be conducted in the future.

Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages (THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할)

  • Heo, Weon;Son, Yonghae;Cho, Hyok-rae;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.421-429
    • /
    • 2022
  • The expression of interleukin-1α (IL-1α) is elevated in monocytic cells, such as monocytes and macro-phages, within atherosclerotic arteries, yet the cellular molecules involved in cytokine upregulation remain unclear. Because peptidoglycan (PG), a major component of gram-positive bacterial cell walls, is detected within the inflammatory cell-rich regions of atheromatous plaques, it was investigated if PG contributes to IL-1α expression in monocytes/macrophages. Exposure of THP-1 monocytic cells to PG resulted in elevated levels of IL-1α gene transcripts and increased secretion of IL-1α protein. The transcription and secretion of IL-1α were abrogated by OxPAPC, an inhibitor of TLR2/4, but not by polymyxin B that inhibits lipopolysaccharide-induced TLR4 activation. To understand the molecular mechanisms of the inflammatory responses due to bacterial pathogen-associated molecular patterns (PAMPs) in diseased arteries, we attempted to determine the cellular factors involved in the PG-induced upregulation of IL-1α expression. Pharmacological inhibition of cell signaling pathways with LY294002 (a PI3K inhibitor), Akti IV (an inhibitor of Akt activation), rapamycin (an mTOR inhibitor), U0126 (a MEK inhibitor), SB202190 (a p38 MAPK inhibitor), SP6001250 (a JNK inhibitor), and DPI (a NOX inhibitor) also significantly attenuated the PG-mediated expression of IL-1α. These results suggest that PG induces the monocytic or macrophagic expression of IL-1α, thereby contributing to vascular inflammation, via multiple signaling molecules, including TLR2, PI3K/Akt/mTOR, and MAPKs.

Antioxidant, anti-inflammatory, and antibacterial activities of a 70% ethanol-Symphyocladia linearis extract

  • Jeong Min Lee;Mi-Jin Yim;Hyun-Soo Kim;Seok-Chun Ko;Ji-Yul Kim;Gun-Woo Oh;Kyunghwa Baek;Dae-Sung Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.579-586
    • /
    • 2022
  • Research on the potential biological activity of red alga Symphyocladia spp. has been limited to Symphyocladia latiuscula, which is widely used as a food ingredient in Korea. Here, we examined the biological activity of another species, Symphyocladia linearis, which is found in Korea and was reported as a new species in 2013. The aim of this study was to evaluate the antioxidant, anti-inflammatory, and antibacterial properties of a 70% ethanol extract of S. linearis. Antioxidant activity, which was evaluated using radical scavenging assays, revealed half maximal inhibitory concentration values for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) of 34.57 and 11.70 ㎍/mL algal extract, respectively. Anti-inflammatory activity of the S. linearis ethanolic extract was evaluated using RAW 264.7 cells by measuring the inhibition of lipopolysaccharide-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The potential cytotoxicity of NO and PGE2 was first examined, confirming no toxicity at concentrations ranging from 10-100 ㎍/mL. NO production was inhibited 61.1% and 78.0% at 50 and 100 ㎍/mL S. linearis extract, respectively; and PGE2 production was inhibited 69.1%, 83.2%, and 94.8% at 25, 50, and 100 ㎍/mL S. linearis extract, respectively. Thus, the S. linearis extract showed very strong efficacy against PGE2 production. The cellular production of reactive oxygen species, measured using 2',7'-dichlorofluorescin diacetate fluorescence, was inhibited 48.8% by the addition of 100 ㎍/mL S. linearis extract. Antibacterial activity was evaluated using the disc diffusion method and minimum inhibitory concentration (MIC). S. linearis was effective only against gram-positive bacteria, exhibiting antibacterial activity against Staphylococcus aureus with a MIC of 256 ㎍/mL extract and against Bacillus cereus with a MIC of 1,024 ㎍/mL extract. Based on these results, we infer that a 70% ethanolic extract of S. linearis possesses strong anti-inflammatory properties, and therefore has the potential to be used in the prevention and treatment of inflammatory and immune diseases.

Sinomonas terrae sp. nov., Isolated from an Agricultural Soil

  • Hyosun Lee;Ji Yeon Han;Dong-Uk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.909-914
    • /
    • 2023
  • While searching for the bacteria which are responsible for degradation of pesticide in soybean field soil, a novel bacterial strain, designated 5-5T, was isolated. The cells of the strain were Gram-staining-positive, aerobic and non-motile rods. Growth occurred at 10-42℃ (optimum, 30℃), pH 5.5-9.0 (optimum, pH 7.0-7.5), and 0-2% (w/v) NaCl (optimum, 1%). The predominant fatty acids were C15:0 anteiso, C17:0 anteiso, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The predominant menaquinone was MK-9 (H2). Diphosphatidylglycerol, glycolipids, phosphatidylinositol, and phosphatidylglycerol were the major polar lipids. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain 5-5T is a member of the genus Sinomonas and its closest relative is Sinomonas humi MUSC 117T, sharing a genetic similarity of 98.4%. The draft genome of strain 5-5T was 4,727,205 bp long with an N50 contig of 4,464,284 bp. Genomic DNA G+C content of strain 5-5T was68.0 mol%. The average nucleotide identity (ANI) values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 87.0, and 84.3 % respectively. In silico DNA-DNA hybridization values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 32.5% and 27.9% respectively. Based on the ANI and in silico DNA-DNA hybridization analyses, the 5-5T strain was considered as novel species belonging to the genus Sinomonas. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain 5-5T represents a novel speciesof the genus Sinomonas, for which the name Sinomonas terrae sp. nov. is proposed. The type strain is 5-5T (=KCTC 49650T =NBRC 115790T).

Microbacterium elymi sp. nov., Isolated from the Rhizospheric Soil of Elymus tsukushiensis, a Plant Native to the Dokdo Islands, Republic of Korea

  • Ye-Ji Hwang;Soo-Yeong Lee;Jin-Soo Son;Jin-suk Youn;Woong Lee;Jae-Ho Shin;Mi-Hwa Lee;Sa-Youl Ghim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2023
  • Microbacterium elymi KUDC0405T was isolated from the rhizosphere of Elymus tsukushiensis from the Dokdo Islands. The KUDC0405T strain was Gram-stain-positive, non-spore forming, non-motile, and facultatively anaerobic bacteria. Strain KUDC0405T was a rod-shaped bacterium with size dimensions of 0.3-0.4 × 0.7-0.8 ㎛. Based on 16S rRNA gene sequences, KUDC0405T was most closely related to Microbacterium bovistercoris NEAU-LLET (97.8%) and Microbacterium pseudoresistens CC-5209T (97.6%). The dDDH (digital DNA-DNA hybridization) values between KUDC0405T and M. bovistercoris NEAU-LLET and M. pseudoresistens CC-5209T were below 17.3% and 17.5%, respectively. The ANI (average nucleotide identity) values among strains KUDC0405T, M. bovistercoris NEAU-LLET, and M. pseudoresistens CC-5209T were 86.6% and 80.7%, respectively. The AAI (average amino acid identity) values were 64.66% and 64.97%, respectively, between KUDC0405T and its closest related type strains. The genome contained 3,596 CDCs, three rRNAs, 46 tRNAs, and three non-coding RNAs (ncRNAs). The genomic DNA GC content was 70.4%. The polar lipids included diphosphatydilglycerol, glycolipid, phosphatydilglycerol, and unknown phospholipid, and the major fatty acids were anteiso-C17:0 and iso-C16:0. Strain KUDC0405T contained MK-12 as the major menaquinone. Based on genotypic, phylogenetic, and phenotypic properties, strain KUDC0405T should be considered a novel species within the genus Microbacterium, for which we propose the name M. elymi sp. nov., and the type strain as KUDC0405T (=KCTC 49411T, =CGMCC1.18472T).

A study on the Antioxidative and Antimicrobial Activities of the Citrus Unshju peel Extracts (감귤과피 추출물의 항산화 및 항균 효과에 관한 연구)

  • Ahn, Myung-Soo;Seo, Mi-Sook;Kim, Hyun-Jeung
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.4
    • /
    • pp.454-461
    • /
    • 2007
  • Antioxidative and antimicrobial activities were carried out on the Citrus Unshju peel solvent extracts in order to discover new functional activities. The amounts of polyphenol in 70% metanol extract (MtEx) was measured as 836.8 mg% in Citrus Unshju peel. The EDA (electron donating ability) of 0.01, 0.02 and 0.1% MtEx in Citrus Unshju peel were measured as levels of 81.3, 86.0 and 89.6%. The nitrite scavenging effects of Citrus peel were also determined as the levels of 34.4% (pH 1.2) and 19.5% (pH 7.0). The pH of react solution was more acidic, the nitrite scavenging effect was more increased. The order of antioxidatives was shown as TBHQ > BHT > TOC > ChEx > EaEx > EtEx > WaEx > Control in corn germ oil and TBHQ > ChEx > EaEx > BHT > EtEx > WaEx > TOC > Control in canola oil. A number of the extracts were certified to have antimicrobial activities for a small number of micro-organisms, similar gram negative and positive micro-organisms. According to the results above, it was summerized that Citrus Unshju peel had the higher total polyphenol, EDA, nitrite scavenging effects and antimicrobial activities. Also isolated extract from ChEx and EaEx had high antioxidative, these effects were very similar to that of ${alpha}$-tocopherol and BHT. It would be proposed that Citrus peel can become a new natural source for antioxidative agents in future food industry.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

Pheno- and genotyping of Streptococcus iniae isolated from cultured rockfish, Sebastes schlegelii at Korean coastal sites (국내 조피볼락(Sebastes sclegelii) 양식장에서 분리한 Streptococcus iniae의 표현형 및 유전형 특성)

  • Tae-Ho Kim;Hyun-Ja Han;Myoung Sug Kim;Miyoung Cho;Soo-Jin Kim
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • Korean rockfish, Sebastes schlegelii, is a representative bony fish that belongs to the family Scorpaenidae and the order Scorpaeniformes. It has high ecological and economic value and is widely cultivated in many East Asian countries, including South Korea, Japan and China. One of streptococci, Streptococcus iniae, is Gram-positive cocci with a negative reaction for catalase and oxidase. The Korean rockfish shows clinical signs when infected with S. iniae, such as body darkening, bleeding, enlarged kidneys, blurred eyes, abdominal distension, etc., ultimately leading to death. The Korean rockfish causes significant economic losses every year in South Korea due to streptococcosis. In this study, we identified bacteria from the fish using polymerase chain reaction and conducted analyses of hemolytic activity and biochemical tests using API 20 STREP and API ZYM systems. Results of confirming the hemolytic activity (n=4) observed in alpha-type hemolysis (25%), beta-type hemol- ysis (50%), and gamma-type hemolysis (25%) of isolates. The biochemical test results exhibited sig- nificant variation among S. iniae. Additionally, we performed intraperitoneal injection with S. iniae in the fish and analyzed the phylogenetic tree using housekeeping genes of S. iniae, including cpsD, arcC, glnA, groEL, gyrB, mutS, pheT, prkC, rpoB, and tkt, via multilocus sequence typing (MLST). The lethal dose (LD50) showed strong pathogenicity, such as 3.34 × 10 colony-forming unit (CFU)/ml for 23FBStr0601 strain and 7.16 × 10 CFU/ml for 23FBStr0602 strain. 23FBStr0603 strain showed relatively low pathogenicity at 1.73 × 105 CFU/ml. The strains 23FBStr0601 and 23FBStr0602, which showed strong pathogenicity, clustered into one monophyletic group. The 23FBStr0603 strain showed weak pathogenicity and formed a monophyletic group with KCTC 3657.