• Title/Summary/Keyword: Grain v1

Search Result 540, Processing Time 0.025 seconds

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor (ZnO-Bi2O3-Co3O4 바리스터의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.882-889
    • /
    • 2011
  • In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Defects and Grain Boundary Properties of ZnO with Mn3O4 Contents (Mn3O4 함량에 따른 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.962-968
    • /
    • 2011
  • In this study, we investigated the effects of Mn dopant (0.1~3.0 at% $Mn_3O_4$ sintered at 1000$^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and grain boundary properties of ZnO, ZM(0.1~3.0) using admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). As a result, three kinds of defect were found below the conduction band edge of ZnO as 0.09~0.14 eV (attractive coulombic center), 0.22~25 eV ($Zn^{{\cdot}{\cdot}}_i$), and 0.32~0.33 eV ($V^{\cdot}_o$). The oxygen vacancy increased with Mn doping. In ZM, an electrically single grain boundary as double Schottky barrier was formed with 0.82~1.0 eV of activation energies by IS & MS. We also find out that the barriers of grain boundary of Mn-doped ZnO (${\alpha}$-factor=0.13) were more stabilized and homogenized with temperature compared to pure ZnO.

Defects and Grain Boundary Properties of Cr-doped ZnO (Cr을 첨가한 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.949-955
    • /
    • 2009
  • In this study, we investigated the effects of Cr dopant (1.0 at% $Cr_2O_3$ sintered at $1000^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and interface state levels of ZnO using dielectric functions ($Z^*$, $M^*$, $Y^*$, $\varepsilon^*$, and $tan{\delta}$), admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). For the identification of the bulk trap levels, we examine the zero-biased admittance spectroscopy and dielectric functions as a function of frequency and temperature. Impedance and electric modulus spectroscopy is a powerful technique to characterize grain boundaries of electronic ceramic materials as well. As a result, three kinds of bulk defect trap levels were found below the conduction band edge of ZnO in 1.0 at% Cr-doped ZnO (Cr-ZnO) as 0.11 eV, 0.21 eV, and 0.31 eV. The overlapped defect levels ($Zn^{..}_i$ and $V^{\cdot}_0$) in admittance spectra were successfully separated by the combination of dielectric function such as $M^*$, $\varepsilon^*$, and $tan{\delta}$. In Cr-ZnO, the interfacial state level was about 1.17 eV by IS and MS. Also we measured the resistance ($R_{gb}$) and capacitance ($C_{gb}$) of grain boundaries with temperature using impedance-modulus spectroscopy. It have discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z"-logf plots with temperature.

Effects of $v_2O_5$ Addition on the Magnetic Properties of Mn-Zn Ferrites (Mn-Zn Ferrites 의 자기적 성질에 미치는 $V_2O_5$의 첨가효과)

  • Jo, Deok-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.222-227
    • /
    • 1992
  • The effects of $V_2O_5$ addition as an additive on the densification, the microstructure and the magnetic properties of Mn-Zn ferrites were studied. The maximum density was observed at 0.1 wt% $V_2O_5$ content and it was recognized that a small content of $V_2O_5$ prohibited the discontinuous grain growth. The initial permeability showed maximum at 0.1 wt% $V_2O_5$ content and the power loss minimum at 0.03 wt% $V_2O_5$ content. It was found that a small content of $V_2O_5$ went into solid solution in the Mn-Zn ferrites, but above that extent $V_2O_5$ formed a second phase to be segregated at the grain boundaries.

  • PDF

Analysis of a.c. Characteristics in ZnO-Bi2O3-Mn3O4 Varistor Using Dielectric Functions (유전함수를 이용한 ZnO-Bi2O3-Mn3O4 바리스터의 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.936-941
    • /
    • 2010
  • In this study, we have investigated the effects of Mn dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;\varepsilon^*$, and $tan\delta$). Admittance spectra and dielectric functions show two bulk traps of $Zn_i^{..}$ (0.20 eV) and $V^{\bullet}_o$ (0.29~0.33 eV) in ZnO-$Bi_2O_3-Mn_3O_4$ (ZBM). The barrier of grain boundaries in ZBM could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.79 eV at lower temperature to 1.08 eV at higher temperature. The grain boundary capacitance $C_{gb}$ was decreased slightly with temperature as 1.3~1.8 nF but resistance $R_{gb}$ decreased exponentially. The relaxation time distribution can result from the heterogeneity of the barriers constituting the varistor. It is revealed that Mn dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy (2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구)

  • Kim Jeoung Han;Yeom Jong Taek;Park Nho Kwang;Lee Chong Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.

Magnetic Properties of Chip Inductors Prepared with V2O5-doped Ferrite Pastes (V2O5 도핑한 페라이트 페이스트로 제조된 칩인덕터의 자기적 특성)

  • Je, Hae-June
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • The purpose of this study Is to investigate the effect of $V_2$O$_{5}$ addition on the microstructures and magnetic properties of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2O_{5}$-doped NiCuZn ferrite pastes. With increasing the $V_2O_{5}$ content, the exaggerated grain growth of ferrite layers was developed due to the promotion of Ag diffusion and Cu segregation into the grain boundaries oi ferrites, which affected significantly the magnetic properties of the chip inductors. After sintering at $900^{\circ}C$, the inductance at 10 MHZ of the 0.5 wt% $V_2O_{5}$-doped chip inductor was 3.7 ${\mu}$H less than 4.2 ${\mu}$H of the 0.3 wt% $V_2O_{5}$-doped one, which was thought to be caused by the residual stress at the ferrite layers increased with the promotion of Ag diffusion and Cu segregation. The quality factor of the 0.5 wt% $V_2O_{5}$-doped chip inductor decreased with increasing the sintering temperature, which was considered to be caused by the electrical resistivity of the ferrite layer decreased with the promotion of Ag/cu segregation at the grain boundaries and the growth of the mean grain size of ferrite due to exaggerated grain growth of ferrite layers.

The Effects of Flux on the Microstructure and Memory Core Characteristics of Lithium Ferrites (Flux가 Lithium Ferrite의 미세구조 및 메모리코어 특성에 미치는 영향)

  • 임호빈
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.1
    • /
    • pp.26-30
    • /
    • 1979
  • The microstructures and memory core characteristics of substituted lithium ferrites with addition of $Bi_2O_3$, $V_2O_5$, $Nb_2O_3$, and $P_2O_5$ were investigated. The effects of composite flux on the sintering of the substituted lithium ferrites were also studied. The results show that the addition of $Bi_2O_3$, $V_2O_5$, and $Nb_2O_5$ enhances sintering whereas $Sb_2O_3$ and $P_2O_5$ inhibits it, and that the addition of $Nb_2O_5$ results in uniform grain size while the addition of $Bi_2O_3$ or $V_2O_5$ results in non-uniformity in grain size. When $P_2O_5$ was added with $V_2O_5$ or $Bi_2O_3$, however, it results in uniform grain size and improved memory core properties.

  • PDF

Microstructural Evolution during the Equal Channel Angular Pressing of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 ECAP 가공시 미세 조직의 변화 연구)

  • 고영건;정원식;신동혁;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.177-180
    • /
    • 2002
  • The effects of pressing temperatures on the formability and the microstructural evolution during equal channel angular pressing (ECAP) of lamellar Ti-6Al-4V alloy were investigated in this study. ECAP above isothermally 600$^{\circ}C$ was successful without producing any noticeable segments at the specimen surfaces after a single pass of pressing. After 4 passes of ECA pressing, lamellar microstructures were significantly refined revealing equiaxed grains of 0.3$\mu\textrm{m}$ in diameter consisting of high angle grain boundaries. Also these ultrafine grains were relatively stable with little grain growth when annealed up to 600$^{\circ}C$ for 1hour.

  • PDF