• Title/Summary/Keyword: Grain sizes

Search Result 446, Processing Time 0.029 seconds

Permeability Effect of Decomposed Granite Soil under the Influence of Crushability and Compaction Energy (화강풍화토(花崗風化土)의 파쇄(破碎) 및 다짐에너지가 투수성(透水性)에 미치는 영향(影響))

  • Lee, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.107-116
    • /
    • 1983
  • This paper is concerned with the permeability through a decomposed granite soil layer which is influnced by change of grain sizes and crushed soils made by varied compaction energy. The change in the content of crushed soils can be described in terms of the ratio of surface area ($S_w{^{\prime}}/S_w $). The experiments were carried out to obtain the relationships of the coefficient of permeability(K) versus the optimum moisture content($w_{opt}$) by the variable head permeability test with the samples that were preapared by compaction test. The results are found as follows; (1) By the change in compaction energy, the crush ratio increased whereas the void ratio decreased with a larger maximum dry density running in parallel with the zero air void curve. (2) The ratio of surface area was $0.33(P)^{0.96}$ in $S_w{^{\prime}}/S_w $ with no relation to the compaction energy. (3) The grain size which produced the largest crush of soil particles ranged from 0.5 to 1 millimetre (4) The relationship of K versus $e^3$/1+e appeared as a straight line on the full-log-scale paper under the optimum moisture state. (5) As the compaction energy was larger, the passing percentage of #200-sieve grains increased linearly. The increment in the surface area ratio was deemed to have been caused by the decreased in the permeability.

  • PDF

Study of Stress Changes in Nanocrystalline Ni Thin Films Eletrodeposited from Chloride Baths (Chloride Bath로부터 전기도금된 나노결정립 니켈 박막의 잔류응력 변화에 대한 연구)

  • Park, Deok-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.163-170
    • /
    • 2011
  • Nanocrystalline Ni thin films were electodeposited from chloride baths to investigate the influences of additive concentration, current density and solution pH on residual (or internal) stress, surface morphology, and microstructure of the films. It was observed that residual stress in Ni thin film was changed from tensile stress mode (about 150 MPa) to compressive stress mode (about -100 MPa) with increasing saccharin concentration as an additive. Microstructure of Ni thin films was changed with/without saccharin in baths. Ni thin films electrodeposited from saccharinfree bath mainly consisted of both FCC(111) and FCC(200) phases. However, Ni thin film electrodeposited from the baths containing saccharin exhibited FCC(111), FCC(200) and FCC (311) phases [sometimes, FCC (220)]. Current density influenced residual stress of Ni thin films. It was measured to be the lowest compressive stress value (about-100 MPa) in range of current density of $2.5\sim10mA{\cdot}cm^{-2}$. Solution pH also influenced residual stress of Ni thin film. Addition of saccharin in baths affected grain size of Ni thin films. Grain sizes of Ni thin films were measured to be about 60 nm without saccharin and 24~38 nm with more than 0.0005M saccharin concentration. Surface of Ni thin films was changed from nodular to smooth surface morphology with addition of saccharin.

Effect of Attachment Substrate Size on the Growth of a Benthic Microalgae Nitzschia sp. in Culture Condition (실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzschia sp.의 성장 특성)

  • Oh, Seok-Jin;Yoon, Yang-Ho;Yamamoto, Tamiji;Yang, Han-Soeb
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2009
  • To understand the effect of attachment substrate on the growth of benthic microalgae, we experimentally investigated the growth of benthic microalgae Nitzschia sp. (Jinhae Bay strain) with additions of glass beads in different sizes. The glass beads used in this study are 0.09-0.15 mm (G1), 0.25-0.50 mm (G2), 0.75-1.00 mm (G3) and 1.25-1.65 mm (G4). No addition of glass beads used as controls. Highest specific growth rate (0.37/day) and maximum cell density ($9,232{\pm}840$ cells/mL) of Nitzschia sp. showed at the smallest glass beads (G1), and the specific growth rate and maximum cell density were decreasing with increasing size of glass beads (specific growth rate and maximum cell density of G4 was 0.24/day and $6,397{\pm}524$ cells/mL, respectively). Moreover, specific growth rate of the control experiment (0.23/day) was significantly lower than their of G1 to G3 experiment. The results indicated that the attachment substrate for benthic microalgae as Nitzschia sp. is important factor which affecting the growth rate as well as cell density. Therefore, the physiological experiment of benthic microalgae seems to be necessary to preliminary experiment, which is addition or not of the attachment suitable substrate and the grain size for the target species of benthic microalgae.

  • PDF

Sediment Preference and Growth of the Young Urechis unicinctus (개불, Urechis unicinctus 치충의 저질선택성 및 성장)

  • 강경호;김재민
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • Studies of the seed production of Urechis unicinctus were conducted under the laboratory conditions to obtain some information for the U.unicinitus culture. The experiment included developmental studies of the egg development, larval culture, sediment preference and growth of young U.unicinctus. The experiment were conducted from March to August, 2000. The adults of U.unicinctus collected in Namhae-do, Korea. The developments of the fertilized eggs were observed under a light-microscope at intervals of one hour after containing with density of one individual per 1 $m\ell$. The larvae were fed with Phaeodactylum tricornutum cultured at the laboratory. The concentration of the phytoplankton for the feed was 30,000 cells per individual larva. With progress of development, the food concentration was gradually increased, up to 10,000 cells per individual for the young U.unicinctus. Trochophore larvae appeared on the 68 hours after hatching. On the 32 days after hatching, over 50% of fertilized eggs developed into young U.unicinctus. In order to investigate the effect of sediment on the growth and burrowing of U.unicinctus, the young worms were reared in tanks with different grain sizes. The highest value of sediment preference and survival rate of U.unicinctus was shown in the mixture sediment group with below 0.10 mm, 1.01∼12.00 mm, over 3.01 mm and shell. The lowest value in both sediment preference and survival rate of U.unicinctus was observed in 1.0l∼2.00 mm grain size.

Shear Strength and One-dimensional Compression Characteristics of Granitic Gneiss Rockfill Dam Material (화강편마암 댐 축조재료의 전단강도 및 일차원 압축특성)

  • Kim Bum-Joo;Kim Yong-Seong;Shin Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.31-42
    • /
    • 2005
  • In this study, a rockfill-dam material was investigated on its shear strength and compressibility by performing large-scaled triaxial and oedometer tests. The rockfill material was compacted at two different compaction levels and sheared in triaxial compression at three different confining stresses. Also, rockfill samples were prepared to have three different grain size distributions but the same dry density. Each sample with a given grain size distribution was then compressed one-dimensionally in a large-scaled oedometer cell with and without soaking. The rockfill samples exhibited slightly different shear behaviors with the varying compaction and confining stress levels. The increase in the compaction level changed the behavior from contractive to dilative. Dilation decreased gradually with increasing confining stress, resulting in reduction in the peak shear strength. The large-scaled oedometer test results showed that particle breakages increased with increasing average particle sizes of the samples. Comparing the samples with different gradations, a relatively well-graded sample exhibited lower compressibility. For saturated samples, slightly higher deformations were observed, compared to dry samples. The values of tangent constrained modulis for the dry samples were larger by about 10 to 20$\%$, on the average, than those for the saturated samples.

Erosion and Recovery Processes in Haeundae Beach by the Invading Typhoon Chaba in 2016 (2016년 태풍 차바 내습 전후의 해운대 해빈의 침식과 회복 과정)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • In spite of continued nourishments, Haeundae Beach in Busan has been suffering from erosion, this being caused by the increased wave energy due to global warming and intermittent typhoon reported by previous works. In the meantime, the typhoon Chaba hit Basan in October 2016. In order to investigate the effects of the typhoon in beach erosion and how fast the beach recovered after the typhoon, repeated beach profiling using a VRS-GPS system was carried out, and the grain size analyses for surface sediments sampled on the beach were conducted. Immediately after the typhoon invasion, Haeundae beach was eroded by 1.4 m in average height. The mean high tide lines were retreated back by 12 m, and beach slope became gentler from $3.8^{\circ}$ to $1.7^{\circ}$. The mean grain sizes of surface sediments became coarser from $1.6{\Phi}$ to $1.2{\Phi}$ after two months, and the sorting well sorted. After two months of typhoon landfall, the mean high tide lines have recovered by 85%, and the beach topography almost recovered. This suggests that the impact of typhoons on Haeundae beach erosion is negligible, and the relaxation time is shorter than that of other beaches.

Geomorphological and Sedimentological Characteristics of Jangdo Wetland in Shinan-gun, Korea (신안 장도습지의 지형과 퇴적물 특성)

  • CHOI, Kwang Hee;CHOI, Tae-Bong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2010
  • The Jangdo wetland is located on a very gentle slope of the mountain area in Daejangdo island, Shinan-gun, Korea, in which the area of the watershed is estimated at 147,000 m2. The wetland has been regarded as a peat bog without any sedimentological evidence. This study was conducted to analyze the geomorphological and sedimentological characteristics of the wetland. The geographic information system (GIS) was used to analyze the drainage system, and field surveys were conducted to measure the range and depth of wetland deposits. The grain size analysis, organic matter determination, elements analysis and radiocarbon dating were performed on samples from the wetland. As a result, the wetland deposits were about 30 cm deep on average, the mean grain sizes ranged from 50 to 500 μm, and the average C/N ratio was 11.5. The portion of organic matter it contained was only 5~26%, which did not satisfy the peat standards. The radiocarbon ages from the wetland deposits range 180±50 14C yr BP to modern, which indicated that natural and anthropogenic interferences including agricultural activities have continuously happened. We conclude that the Jangdo wetland is still in its infancy, not a steady state, so that it could be very sensitive to a small disturbance.

Effect of Grain Size and Drying Temperature on Drying Characteristics of Soybean (Glycine max) Using Hot Air Drying (열풍건조 시의 건조 온도와 입경에 따른 콩(Glycine max)의 건조 특성)

  • Park, Hyeon Woo;Han, Won Young;Yoon, Won Byong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1700-1707
    • /
    • 2015
  • The effects of drying temperature on drying characteristics of soybeans with different grain sizes [6.0 (S), 7.5 (M), and 9.0 mm (L) (${\pm}0.2$)] with 25.0% (${\pm}0.8$) initial moisture content were studied. Drying temperatures varied at 25, 35, and $45^{\circ}C$, with a constant air velocity (13.2 m/s). Thin-layer drying models were applied to describe the drying process of soybeans. The Midilli-Kucuk model showed the best fit ($R^2$ >0.99). Based on the model parameters, drying time to achieve the target moisture content (10%) was successfully estimated. Drying time was strongly dependent on the size of soybeans and the drying temperature. The effective moisture diffusivity ($D_{eff}$) was estimated by the diffusion model based on Fick's second law. $D_{eff}$ values increased as grain size and drying temperature increased due to the combined effect of high temperatures and high drying rates, which promote compact tissue. Deff values of S, M, and L estimated were in the range of $0.83{\times}10^{-10}$ to $1.51{\times}10^{-10}m^2/s$, $1.17{\times}10^{-10}$ to $2.17{\times}10^{-10}m^2/s$, and $1.53{\times}10^{-10}$ to $2.95{\times}10^{-10}m^2/s$, respectively, whereas activation energy ($E_a$) based on drying temperature showed no significant differences in the size of soybeans.

A Study on the Dielectric and the Piezoelectric Properties of xPb$(Al_{1/2}Ta_{1/2})O_3$-(1-x)Pb$(Zro_{0.52}Ti_{0.48})O_3$ Ceramics (xPb$(Al_{1/2}Ta_{1/2})O_3$-(1-x)Pb$(Zro_{0.52}Ti_{0.48})O_3$ 세라믹스의 유전 및 압전특성에 관한 연구)

  • Kang, Do-Won;Kim, Tae-Yoal;Oh, Jae-You;Oh, Eui-Kyun;Kim, Seok-Su;Kim, Beom-Jin;Kim, Myong-Ho;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1726-1728
    • /
    • 1999
  • Dielectric and piezoelectric properties of xPb$(Al_{1/2}Ta_{1/2})O_3$-(1-x)Pb$(Zro_{0.52}Ti_{0.48})O_3$ system were investigated. The highest density of $7.80g/cm^3$ for PAT-PZT ceramics of 5mol% PAT was obtained. The relative permittivity of PAT-PZT ceramics of 5mol% PAT was 1.642 at room temperature. The maximum value of electromechanical coupling factor $k_p$ of 55% and $k_t$ of 33% were obtained at the composition of 5mol% PAT. The grain sizes were reduced by increasing the amount of PAT, however mechanical quality factor$(Q_m)$ had a minimum value of 44 at the composition of 5mol% PAT.

  • PDF

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF