• Title/Summary/Keyword: Grain filling

Search Result 288, Processing Time 0.026 seconds

Sugars, Soluble Solids, and Flavor of Sweet, Super Sweet, and Waxy Corns during Grain Filling

  • Lee, Suk-Soon;Yun, Sang-Hee;Kim, Jae-Hyeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.267-272
    • /
    • 1999
  • In order to determine the optimum harvest time of vegetable corns, the changes in sugars, soluble solids, and flavor of kernels of sweet (cv. ‘Golden Cross Bantam 70’), super sweet (cv. ‘Cocktail E-51’), and waxy corns (cv. ‘Chalok 2’) were observed at different ripening stages. Sucrose was a major sugar in the sweet and super sweet corns and the content increased from 15 to 21 and 27 days after silking (DAS), respectively and then decreased. Glucose and fructose contents of sweet and super sweet corns tended to decrease with kernel maturity. Total sugar content of the sweet corn analyzed by the anthrone method increased rapidly from 15 to 21 DAS, while that of the super sweet and the waxy corns increased slowly up to 24 and 26 DAS, respectively and decreased thereafter. The content of soluble solids in sweet corn was much higher than that of super sweet corn. Starch content of the sweet corn increased slowly from 15 to 33 DAS, while that of the super sweet corn increased a little rapidly from 15 to 21 DAS and then leveled off to 33 DAS. Starch content of the waxy corn increased continuously from 21 to 38 DAS. There was a positive correlation between the sum of individual sugars (sucrose, glucose, and fructose) and soluble solids in both sweet and super sweet corns, while the content of soluble solids was not related to the sum of individual sugars or total sugars. The flavor rate of sweet and super sweet corns maintained high between 21 and 27 DAS and that of waxy corn decreased from 24 to 33 DAS. The optimum harvest time for sweet, super sweet, and waxy corns was thought to be 21 to 24 DAS considering sugar and starch contents, flavor, and marketing.

  • PDF

Fan and Heater Management Schemes for Layer Filling and Mixing Drying of Rough Rice with Natural Air by Simulation (시뮬레이션에 의한 벼의 누적혼합 상온통풍건조의 송풍기 및 가열기의 운영방법에 관한 연구)

  • 금동혁;한충수;박춘우
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.229-244
    • /
    • 1998
  • This study was performed to determine proper fan and heater management schemes for natural air drying of rough rice in round steel bin with stirring device under Korean weather conditions. A computer simulation model was developed to predict moisture content changes, energy requirements, and drymatter losses during drying of rough rice by natural air. Drying test was conducted to validate the simulation model using round steel bin of holding capacity of 300ton at Rice Processing Complex in Jincheon. The bin was filled with rough rice every day and mixing by stirring device. Moisture contents, ambient air temperatures, relative humidities, static pressures in plenum chamber in the bin, airflow rates, and electrical and fuel energy were measured. Relative errors of moisture content changes predicted by the simulation model were below 5ft, and relative errors of final moisture content, final grain weight, required energy ranged from 0.9% to 6%. These not levels indicated that the simulation model can satisfactorily predict the performance factors of natural air drying system such as drying rates and energr consumptions comparing error level of 10% to 15% in other drying simulation models generally used in dryer desists. Twelve different fan and heater management schemes were evaluated using the computer simulation model based on three hourly weather data from Suweon for the period of 1952-1994. The best management schemes were selected comparing the drymatter losses, required drying times, required energy consumptions. Operating fan without heating only when ambient relative humidity was below 85% or 90% appeared to be the most effective method of In operation in favorable drying weather. Under adverse drying climates or to reduce required drying time, operating fan continuously, and heating air with $1.5^{\circ}C$ temperature rise only when ambient relative humidity was over 85% appeared to be the most suitable method.

  • PDF

Application of Pulsed Chemical Vapor Deposited Tungsten Thin Film as a Nucleation Layer for Ultrahigh Aspect Ratio Tungsten-Plug Fill Process

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.486-492
    • /
    • 2016
  • Tungsten (W) thin film was deposited at $400^{\circ}C$ using pulsed chemical vapor deposition (pulsed CVD); film was then evaluated as a nucleation layer for W-plug deposition at the contact, with an ultrahigh aspect ratio of about 14~15 (top opening diameter: 240~250 nm, bottom diameter: 98~100 nm) for dynamic random access memory. The deposition stage of pulsed CVD has four steps resulting in one deposition cycle: (1) Reaction of $WF_6$ with $SiH_4$. (2) Inert gas purge. (3) $SiH_4$ exposure without $WF_6$ supply. (4) Inert gas purge while conventional CVD consists of the continuous reaction of $WF_6$ and $SiH_4$. The pulsed CVD-W film showed better conformality at contacts compared to that of conventional CVD-W nucleation layer. It was found that resistivities of films deposited by pulsed CVD were closely related with the phases formed and with the microstructure, as characterized by the grain size. A lower contact resistance was obtained by using pulsed CVD-W film as a nucleation layer compared to that of the conventional CVD-W nucleation layer, even though the former has a higher resistivity (${\sim}100{\mu}{\Omega}-cm$) than that of the latter (${\sim}25{\mu}{\Omega}-cm$). The plan-view scanning electron microscopy images after focused ion beam milling showed that the lower contact resistance of the pulsed CVD-W based W-plug fill scheme was mainly due to its better plug filling capability.

Characterization of a QTL associated with chlorophyll content using progeny from an interspecific cross in rice (Oryza Sativa L.)

  • Shim, Kyu-Chan;Luong, Ngoc Ha;Kim, Sun Ha;Jeon, Yun-A;Lu, Xin;Ahn, Sang-Nag
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.23-23
    • /
    • 2017
  • Rice (Oryza sativa L.) is the world's most important cereal crop. In crop plant, chlorophyll content and leaf senescence could affect grain filling and yield. We analyzed a QTL associated with chlorophyll content and delayed leaf senescence using high chlorophyll near isogenic line (HC-NIL). HC-NIL derived from a cross between Oryza sativa cv. Hwaseong as a recurrent parent and wild species O. grandiglumis as a donor parent showed higher chlorophyll content than Hwaseong. To identify QTL associated with chlorophyll content, 58 $F_3$ and 38 $F_4$ lines were developed from a cross between HC-NIL and Hwaseong. For QTL analysis, simple sequence repeat (SSR) markers were used for genotyping and one-way ANOVA was conducted. A QTL for chlorophyll content (qCC2) was detected in chromosome 2 and explained 24.63% of phenotypic variation. The senescence effect of the qCC2 was examined in dark-induced incubation (DII). Detached leaves from Hwaseong and HC-NIL were incubated on 3mM MES buffer (pH 5.8) at $27^{\circ}C$ under complete dark condition. After 3 days of incubation, the Hwaseong leaves turned yellow, but the HC-NIL leaves were green. HC-NIL has higher chlorophyll content with delayed senescence than Hwaseong. These results indicated that qCC2 is associated with stay-green phenotype. To know whether the qCC2 is responsible for leaf functionality, ion leakage test and Fv/Fm measurement were performed. Both experiment results showed that differences were observed between Hwaseong and HC-NIL but it was not statistically significant. These results might suggest that the qCC2 is possibly related to chlorophyll content and non-functional stay-green phenotype.

  • PDF

A Reconstructive Study on the Urban Structure of the Original Masan Early in the 20th Century (20세기 초 원마산(原馬山) 도시공간의 복원적 연구 -1912년을 기준으로-)

  • Heo, Jeong-Do;Lee, Kyu-Sung
    • Journal of architectural history
    • /
    • v.9 no.1 s.22
    • /
    • pp.27-46
    • /
    • 2000
  • This study aims at examining the background and development process of Masan city after Koryo Dynasty, making a reconstructive map of Original Masan using the first registration maps made in 1912 and analyzing the urban structure of the Original Masan area. The origin of Masan city went back to Koryo dynasty. Around 1040 Koryo government placed an official shipping facility in Masan to transport the taxed grain to the capital city. After that Masan became an important port covering the southern part of KyungSang-Do. And the urbanization of the Original Masan began to bud after a shipping facility was again established by the Chosun Dynasty in 1760 and strengthened in the 19th century after the social standing system was broken and many peasants moved to cities as daily workers. In 1899 Masan was forced to be opened to foreign powers and they placed an international settlement distanced from the area(Original Masan). After this many Japanese advanced to the international settlement and further to the area. The advancement of Japanese brought a critical change in the urban structure of the area. Land was owned by Japanese and many modern sysytems were introduced such as modern buildings, new roads, railroad and modern factories. According to the reconstructive map of the area, 80.5% of land lots are less than $200m^2$ showing the size of each land lot is comparatively small. And Japanese occupied 31.5% of the land in the area. Their land was located on the stratigic points near the port and the center of commerce. The ratio of the road area to the whole land was around 14%, not so low for urban areas in that time. The reconstructive map reveals the exact coastline of the year 1912 erased now due to filling the sea and extending the land, Present Masan city has been developed having the Original Masan as its nucleus. The area has been always the center of urban activities for Masan city. Making an exact reconstructive map for the area and analyzing the urban structure of the area in 1912 is a very important work to understand Masan city wholy.

  • PDF

Morpho-Physiological Studies on Elongation of Mesocotyl and Seminal Root in Rice Plant I. Varietal Differences and Effects of Seed Maturity and Storage Condition on Mesocotyl Elongation (수도 중배축 및 종근 생장의 형태.생리학적 연구 I. 중배축 신장의 품종간 차이와 종자숙도 및 저장조건의 영향)

  • 김진호;정병관;이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.3
    • /
    • pp.296-302
    • /
    • 1989
  • The mesocotyl elongation, having much effect on emergence and stand establishment in the direct sowing culture of rice, was investingated and summarized as follows: As to origin of cultivars, the average lengths of mesocotyl were 9.6 mm in the Indica-Japonica hybrid cultivars, 4.4 mm in the native cultivars and 3.2mm in the Japonica type, respectively. The mesocotyl lengths were tjereh, aman, aus, boro and bulu in order, with the mesocotyl lengths of 29.3mm and 5.4 mm in tjereh and bulu, respectively. The mesocotyl lengths were great in Baekkyungjo, Dadajo & Hejo among the native cultivars, in Sangpungbyeo, Paltal & Gokyangdo of the Japonica type and in Weonpungbyeo, Gayabyeo, Milyang 30 & Sujeongbyeo in Indica- Japonica hybrid cultivars, respectively. The mesocotyl length was the greatest at the seeds sampled I week after flowering (39. 3mm in length), and became decreased with the longer grain-filling. The mesocotyl elongated worse with the longer duration of seed storage regardless of seed maturity, and became longer at the 5$^{\circ}C$ storage plot than at the 15 and 25$^{\circ}C$ plots.

  • PDF

A Study on the Utilization of Coal Ash as Earthwork Materials (석탄회의 토공재로서의 활용에 관한 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 1996
  • In this study, the possibility of the utilization of coal ash as earthwork materials is investigated. For this purpose, some laboratory experiments were carried out. The samples used in these tests are fly ash(FA), bottom ash(BA), coal ash dropped into ash pond(FA:BA=8:2), and mixed coal ash(FA:BA=5:5), which were discharged as a by-product at Yong-Yeul thermoelectric power plant, and general road filling materials. And for the deformation analysis of coal ash reclamation ground, several hyperbolic model parameters were determined by triaxial compression test. As a result of this study, coal ash has excellent engineering properties such as strength parameters comparing with general soils of the same grain size, especially in case of being used as backfill materials and reclamation materials on soft ground, and coal ash is superior to general earthwork materials in engineering properties becasuse of self hardening behaveiour, light weight property, etc.

  • PDF

Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite (고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향)

  • Nam, Woo Hyun;Meang, Eun-Ji;Lim, Young Soo;Lee, Soonil;Seo, Won-Seon;Lee, Jeong Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.852-856
    • /
    • 2015
  • In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.

Characteristics of Copper Film Fabricated by Pulsed Electrodeposition with Additives for ULSI Interconnection (펄스전착법과 첨가제를 사용하여 전착된 ULSI배선용 구리박막의 특성)

  • Lee Kyoung-Woo;Yang Sung-Hoon;Lee Seoghyeong;Shin Chang-Hee;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.237-241
    • /
    • 1999
  • The characteristics of copper thin films and via hole filling capability were investigated by pulsed electrodeposition method. Especially, the effects of additives on the properties of copper thin films were studied. Copper films, which were deposited by pulsed electrodeposition using commercial additives, had low tensile stress value under 83.4 MPa and high preferred Cu (111) texture. Via holes with $0.25{\mu}m$ in diameter and 6 : 1 aspect ratio were successfully filled without any defects by superfilling. It was observed that copper microstructure deformed by twining. After heat treatment at $500^{\circ}C$ for 1 k in vacuum furnace, grain size was 1 or 2 times as large as film thickness and the bamboo structure was formed. Heat treated copper films showed good resistivities of $1.8\~2.0{\mu}{\Omega}{\cdot}cm$.

Physiological and Genetic Mechanisms for Nitrogen-Use Efficiency in Maize

  • Mi, Guohua;Chen, Fanjun;Zhang, Fusuo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 2007
  • Due to the strong influence of nitrogen(N) on plant productivity, a vast amount of N fertilizers is used to maximize crop yield. Over-use of N fertilizers leads to severe pollution of the environment, especially the aquatic ecosystem, as well as reducing farmer's income. Growing of N-efficient cultivars is an important prerequisite for integrated nutrient management strategies in both low- and high-input agriculture. Taking maize as a sample crop, this paper reviews the response of plants to low N stress, the physiological processes which may control N-use efficiency in low-N input conditions, and the genetic and molecular biological aspects of N-use efficiency. Since the harvest index(HI) of modern cultivars is quite high, further improvement of these cultivars to adapt to low N soils should aim to increase their capacity to accumulate N at low N levels. To achieve this goal, establishment and maintenance of a large root system during the growth period may be essential. To reduce the cost of N and carbon for root growth, a strong response of lateral root growth to nitrate-rich patches may be desired. Furthermore, a large proportion of N accumulated in roots at early growth stages should be remobilized for grain growth in the late filling stage to increase N-utilization efficiency. Some QTLs and genes related to maize yield as well as root traits have been identified. However, their significance in improving maize NUE at low N inputs in the field need to be elucidated.

  • PDF