• 제목/요약/키워드: Grain boundary fracture

검색결과 123건 처리시간 0.026초

26Cr-2Mo 수퍼 페라이트계 스테인리스강의 용접부 기계적 성질에 미치는 질소 및 석출물의 영향 (Effects of Nitrogen and Precipitates on the Mechanical Properties of 26Cr-2Mo Superferritic Stainless Steel Welds)

  • 황의순;이하미;김성욱;서영대;이창희;안상곤;이용득
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.63-71
    • /
    • 2002
  • One of the shortcoming of ferritic stainless steels is their limited toughness. The most important factor governing the toughness of ferritic stainless steels is hewn to be their interstitial contents. Due to the limited solubility of carbon and nitrogen in the ferrite matrix, it is difficult to avoid carbide and nitride precipitates. In the study, the role of nitrogen on the toughness of 260r-2Mo superferritic stainless steel welds has been investigated using alloys containing various nitrogen levels between 100 and 1640 ppm. Mechanical properties of weld metals have been evaluated by microhardness, Charpy impact test and notch tensile test. The alloys are mainly embrittled by the grain boundary and intragranular nitride precipitation. Grain boundary precipitates are considered to be more deleterious than intrauanular nitrides. Fracture mechanism have been elucidated through microscopic evaluation of notch tensile test

입계기공의 확산성장 모델을 이용한 고온 기기의 크립균열전파 해석 (2)

  • 전재영
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1186-1193
    • /
    • 1996
  • The analytic solution of the stress field at creep crack in the presence of grain boundary caviation is to be obtained by solving the governing equation which was derived through the previous paper. The complex integral technique is used to slove the singular integral equation. under the help of the information about stress behaviors at the ends of integral region know by numerical solution. The resultant stress disstribution obtained shows the relaxed crack-tip singularity of $r^{1/2+\theta}$ due to the intervention of cavitation effect, otherwise, it should assumed to be $r^{1/2}$ singularity of linear elastic fracture mechanics with no cavitation.

열처리에 따른 TiAl금속간화합물의 층상조직 변화 (Changes of Lamellar Structure of TiAl Intermetallic Compound Heat Treatment)

  • 신재관;정인상;박경채
    • 열처리공학회지
    • /
    • 제6권3호
    • /
    • pp.127-137
    • /
    • 1993
  • The changes of lamellar(${\alpha}_2+{\gamma}$) structure of TiAl intermetallic compound which is a high potential, high temperature aerospace material was investigated by heat treatment. The lamellar structure was short and made subgrain in prior a grains after homogenizing at 1523 K. It became longer and finer, and the subgrain went out during subsequent isothermal heatteating at 1273 K. The yield, fracture strength and strain to fracture if the heat treated specimens was increased and the hardness of them was decreased a little in the finer lamellar structure, because fine lamellar interface, sugrain boundary and grain boundary may block initiation and propagation of crack.

  • PDF

정전위 전해에칭법에 의한 스테인레스 강의 입계 석출물 분석 (Analysis of the grain boundary precipitates in stainless steel by potentiostatic etching dissolution method)

  • 박신화;안병량;홍기정;이도형
    • 분석과학
    • /
    • 제6권2호
    • /
    • pp.157-165
    • /
    • 1993
  • 강 중 석출물을 추출분리한 후 이를 정량분석하는 것을 목적으로 개발된 정전위 전해법을 304 스테인레스 판재 및 선재 제조시에 발생한 결함 원인 분석에 활용하여 시료의 조직을 관찰하였으며, 결함 원인을 조사하였다. 스테인레스 선재 및 판재의 균열 전파 양상은 정전위 전해법을 이용하여 에칭한 후 주사전자현미경으로 관찰하였고, 입계를 따라서 존재하는 조대한 석출물은 EDS 및 EPMA를 이용하여 성분분석을 행하였다. 이들 조대한 석출물의 구조분석은 X-선 회절 패턴을 이용하여 행하였다. 판재 및 선재 두 경우 모두 균열은 입계를 따라서 전파하고 있었으며, 입계에는 $M_{23}(C,\;B)_6$ 이외에 조대한 $M_2C$ 석출물이 존재하는 것으로 확인되었다. 이들 석출물들의 분석에 정전위 전해에칭법을 이용함으로써 양호한 시료를 얻을 수 있었다.

  • PDF

선박·해양 구조물용 YS 460 MPa 강재의 용접금속 특성에 미치는 PWHT의 영향 (Effects of PWHT on Weld Metal Properties of YS 460 MPa Steels for Ship and Offshore Structures)

  • 강창룡;정상훈
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.75-79
    • /
    • 2014
  • This paper has an aim to study the effect of PWHT(for 140min. at $600^{\circ}C$) on FCAW weld metal properties (tensile, charpy impact and CTOD value) of YS 460 MPa steels for ship and offshore structures. On the basis of these study, it was found that strength was decreased and elongation was increased by PWHT. These phenomenon resulted from the reduction of acicula ferrite volume fraction by grain growth. Also, Charpy impact and CTOD value were decreased by PWHT. These phenomenon resulted from grain growth. Because the grain boundary grown by PWHT can play a role as crack initiation site and make the crack propagate more easily. Although weld metal properties were decreased by PWHT, tensile and impact properties could meet the class societies requirements for welds of YS 460 MPa steel, but decrease of fracture toughness need to be consider seriously.

$Al_2O_3$-33Vol.% $SiC_w$의 고온피로에 미치는 피로하중주파수의 영향 (Fatigue Frequency Effect of High Temperature Fatigue Fracture Behavior of $Al_2O_3$-33Vol.% $SiC_w$)

  • 김송희
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.785-792
    • /
    • 1991
  • An investigation of the crack propagation behavior of Al2O3-33Vol.% SiCw at 140$0^{\circ}C$ was conducted with various loading frequencies. Higher crack propagation was observed in lower frequency and higher load ratios. Interface sliding fracture due to glassy phase from the oxidation of SiCw and cavitation along grain boundary of diffusional creep appeared to be the main mechanism of fatigue fracture in slower crack propagation while interface sliding and whisker pull out aided by glassy phase formation played main role of fatigue fracture for higher crack growth condition. The frequency effect on deformation behavior was discussed with a Maxwell model.

  • PDF

다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동 (Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals)

  • 유재석;곽현;이명진;김용덕;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

Ni-36.5at.%Al 합금에서 V 첨가가 파괴거동 및 마르텐사이트 내부조직에 미치는 영향 (The Influence of Vanadium Addition on Fracture Behavior and Martensite Substructure in a Ni-36.5at.%Al Alloy)

  • 김영도;최주
    • 분석과학
    • /
    • 제5권2호
    • /
    • pp.203-211
    • /
    • 1992
  • Ni-36.5at.%Al 합금에서 결정립계에서의 scavenging 원소로 알려진 V를 첨가하여 이 합금의 파괴거동 및 마르텐사이트 미세조직에 미치는 V의 영향에 대해 조사하였다. 시편의 파단면은 주사전자현미경으로 관찰하였고 EDX spectrometer를 사용하여 파단면의 조성을 분석하였으며 투과전자현미경으로 마르텐사이트 내부조직의 변화에 대해 조사하였다. V의 첨가로 입계파괴에서 입내파괴로 파괴 모드의 변화를 나타내었으며 EDX spectrometer로 분석한 결과 입내에 비해 입계에 Al의 함량이 상대적으로 증가되는 양상을 보여 주었다. Ni-36.5at.%Al 합금의 경우 마르텐사이트 플레이트는 내부쌍정으로 이루어져 있으나 V의 첨가에 따라 twinned 마르텐사이트 조직은 사라지며 stacking fault와 고밀도의 전위를 가진 modulated 조직이 점차 지배적으로 형성되는 것이 관찰되었다. Stacking fault를 분석한 결과 Al과 V의 치환에 따른 extrinsic fault였으며 high-energy 상태인 이 stacking fault가 있는 부위에 유해 원소인 S가 편석됨으로써 결정립계에서의 파괴를 줄일 수 있었다.

  • PDF

진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향 (The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings)

  • 유병기;최학규;박흥일;정해용
    • 한국주조공학회지
    • /
    • 제40권2호
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

급속응고 Al-Mg-X(X=Cr, Zr or Mn) 합금의 미세구조와 특성간의 관계 (The Relationship between Microstructure and Property of Rapidly Solidified Al-Mg-X(X=Cr, Zr or Mn) Asloys)

  • 맹덕영
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.271-278
    • /
    • 1996
  • In this study, the effect of the transition elements on the microstructure and mechanical properties of rapidly solidified Al-Mg-X alloys was investigated. As a result of the rapid solidification processing, fine equiaxed grains with a mean diameter of 2 $\mu$m were observed in these alloys. Many fine particles were found to be distributed rather homogeneously throughout the matrix with relatively large particles occasionally at grain boundaries. The ultimate tensile strengths of Al-Mg-X alloys were found to decrease rather remarkably at 150 $^{\circ}C$ without the gain of the ductility at 150 $^{\circ}C$, which may result from segregation of $\beta$ ($Al_{3}Mg_{2}$) precipitates. Fine dimples were observed on the fracture surfaces for all alloy systems and the variation of the size and shape of dimples was not observed upon alloy systems. The ductility at 530 $^{\circ}C$ was found to be ~100%, suggesting that grain boundary sliding did not contribute to ductiliy despite he grain size stabilization. The absence of superplastic behavior may be associated with low boundary misorientation in rapidly solidified Al-Mg-X alloys.

  • PDF