• 제목/요약/키워드: Grain boundary diffusion

검색결과 144건 처리시간 0.032초

나노구조재료의 소성변형 성질의 변형률속도 의존성 (Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials)

  • 윤승채;김형섭
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

Microstructures and Dielectric Properties of SrTiO$_3$-Based BL Capacitor with Content of Ca

  • 김충혁;최운식;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.35-43
    • /
    • 1999
  • Microstructures and dielectric properties of (Sr$\_$1-x/Ca$\_$x/) TiO$_3$-0.006Nb$_2$O$\_$5/ (0.05$\leq$x$\leq$0.2) boundary layer ceramics were investigated. The samples fired in a reducing atmosphere(N$_2$) were painted on the surface with CuO paste for the subsequent grain boundary diffusion, and then annealed at 1100$^{\circ}C$ for 2 hrs. The metal oxide of CuO infiltrated by thermal diffusion from surface of sample presents continuously in not grain but only grain boundary, and makes up thin boundary phase. The SEM photo, and EDAX revealed that CuO was penetrated rapidly into the bulk along the grain boundaries during the annealing. The average grain sizes is continuously increased as the content of substitutional Ca is increased from 5[mol%] to 15[mol%], but the average grain size of the sample with content of 20[mol%] Ca is slightly decreased. In the samples with content of 10∼15[mol%] Ca, excellent dielectric properties were obtained as follows; dielectric constant <25000, dielectric loss <0.3[%], and capacitance change rate as a function of temperature <${\pm}$10[%], respectively. All samples in this study exhibited dielectric relaxation with frequency as a functior of the temperature.

  • PDF

PZT 세라믹스에서 $PbZrO_3$$PbTiO_3$ 첨가에 의한 입계이동과 입자모양 변화 (Grain Boundary Migration and Grain Shape Change Induced by Alloying of $PbZrO_3$ and $PbTiO_3$ in PZT Ceramics)

  • 허태무;김재석;이종봉;이호용;강석중
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.102-109
    • /
    • 2000
  • When PbZrO3 (PZ) and PbTiO3 (PT) particles were scattered on polished surfaces of sintered Pb(Zr0.52Ti0.48)O3 (PZT; Zr/Ti=1.08) and then annealed, the PZT grain boundaries migrated. Near the scattered particles, grain boundaries were corrugated and thus the grain shape changed from a normal one to irregular ones. Especially, near the scattered PZ particles, fast grain growth occurred. In the regions swept by moving grain boundaries, the Zr/Tiratio was measured to be about 1.35 for of PZ scattering and about 0.8 for PT scattering, respectively. This result indicates that the grain boundary migration was induced by alloying of Zr and Ti ions in PZT grains, as in usual diffusion induced grain boundary migration(DIGM). A calculation showed that higher coherency strain energy was induced for PT scattering because of higher alloying of Ti than of Zr.

  • PDF

분위기와 첨가제가 TiO2 세라믹스의 입자성장에 미치는 영향 (Effects of Additives and Atmospheres on the Grain Growth of TiO2 Ceramics)

  • 박정현;최헌진;박한수
    • 한국세라믹학회지
    • /
    • 제25권4호
    • /
    • pp.390-398
    • /
    • 1988
  • Effects of atmospheres and adidtives on the grain growth of TiO2 ceramics were investigated. In the range of 1300~140$0^{\circ}C$, grain growth was increased in CO2 as compared with O2 atmosphere and the grain boundary migration activation energy was lower than the diffusion activation energy of oxygen ion in TiO2. Also, in the case of addition of oxides, the grain growth was increased by oxides acting as a acceptor andinhibited by oxides acting as a donor. From the above results, when the oxygen vacancy concentration was increased, the intrinsic grain boundary mobility was increased and the pore drag force was decreased due to the rapid densification. Also it seems that the pore was migrated by the surface diffusion rather than lattice diffusion.

  • PDF

일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I) (Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism -)

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)

디스플레이 소자 개발을 위한 다결정 실리콘 확산의 컴퓨터 모델링에 관한 연구 (Computer Modeling of Impurity Diffusion in Poly-silicon for Display Devices)

  • 이흥주;이준하
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.210-217
    • /
    • 2004
  • 본 연구는 기존 반도체 단위공정의 실리콘 중심 CAD 환경을 다결정실리콘 중심의 환경으로 전환하는 방법론에 대해 제안하였다. 다결정실리콘 공정에서의 확산과 이온도핑에 의한 불순물 이동에 관련하여 결정립내부와 결정립계상에서의 확산을 동시에 고려하는 이중흐름(two-stream)모델을 채택하고, 이와 관련된 파라미터들의 민감도 분석을 통하여 다결정실리콘 컴퓨터 시뮬레이션 환경을 재구성하였다. 시뮬레이터의 캘리브레이션 과정을 거친 결과 다결정실리콘에 대한 SIMS 데이터와 전반적으로 잘 일치하였다.

  • PDF

Computer simulation study for the effect of potential energy on the behavior of grain boundary using Molecular dynamics

  • Choi, Dong-Youl;Kim, Hyun-Soo;Kim, Young-Suk;Tomita, Yoshihiro
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.173-178
    • /
    • 1999
  • In this study MD simulations have been performed to observe the behavior of a grain boundary in an a-Fe plate under 2-dimensional loading. In MD simulation the acceleration of every molecule can be achieved from the potential energy and the force interacting between each molecule and the integration of the motion equation by using Verlet method gives the displacement of each molecule. Initially four a-Fe rectangular plates having different misorientation angles of grain boundary were modeled by using the Johnson potential and Morse potential We compared the potential energy of the grain boundary system with that of the perfect structure model. Also we could obtain the width of the grain boundary by investigating the local potential energy distribution. The tensile loading for each grain boundary models was applied and the behavior of grin boundary was studied. From this study it was clarified that in the case using Johnson potential the obvious fracture mechanism occurs along the grain boundary in the case of Morse potential the diffusion of the grain boundary appears instead of the grain boundary fracture.

  • PDF

Radiation induced grain boundary segregation in ferritic/martensitic steels

  • Xia, L.D.;Ji, Y.Z.;Liu, W.B.;Chen, H.;Yang, Z.G.;Zhang, C.;Chen, L.Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.148-154
    • /
    • 2020
  • The radiation induced segregation of Cr at grain boundaries (GBs) in Ferritic/Martensitic steels was modeled assuming vacancy and interstitialcy diffusion mechanisms. In particular, the dependence of segregation on temperature and grain boundary misorientation angle was analyzed. It is found that Cr enriches at grain boundaries at low temperatures primarily through the interstitialcy mechanism while depletes at high temperatures predominantly through the vacancy mechanism. There is a crossover from Cr enrichment to depletion at an intermediate temperature where the Cr:Fe vacancy and interstitialcy diffusion coefficient ratios intersect. The bell-shape Cr enrichment response is attributed to the decreasing void sinks inside the grains as temperature rises. It is also shown that low angle grain boundaries (LAGBs) and special Σ coincidence-site lattice (CSL) grain boundaries exhibit suppressed radiation induced segregation (RIS) response while high angle grain boundaries (HAGBs) have high RIS segregation. This different behavior is attributed to the variations in dislocation density at different grain boundaries.

Coercivity Enhancement of Sintered Nd-Fe-B Magnets by Grain Boundary Diffusion with DyH3 Nanoparticles

  • Liu, W.Q.;Chang, C.;Yue, M.;Yang, J.S.;Zhang, D.T.;Liu, Y.Q.;Zhang, J.X.;Yi, X.F.;Chen, J.W.
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.400-404
    • /
    • 2013
  • Grain boundary diffusion technique with $DyH_3$ nanoparticles was applied to fabricate Dy-less sintered Nd-Fe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet were improved by 60% and reduced by 7% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient (${\alpha}$) and the coercivity temperature coefficient (${\beta}$) of the magnets were improved after diffusion treatment. Investigation shows that Dy is preferentially enriched as (Nd, Dy)$_2Fe_{14}B$ phase in the surface region of the $Nd_2Fe_{14}B$ matrix grains indicated by the remarkable enhancement of the magneto-crystalline anisotropy field of the magnet. As a result, the magnet diffused with a small amount of Dy nanoparticles possesses enhanced coercivity without remarkably sacrificing its magnetization.

입계확산처리된 Nd-Fe-B 소결자석에서 Dy의 확산에 미치는 Cu와 Al 분말의 혼합 효과 (Effect of Cu/Al powder mixing on Dy diffusion in Nd-Fe-B sintered magnets treated with a grain boundary diffusion process)

  • 이민우;장태석
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.432-436
    • /
    • 2016
  • We investigate the microstructural and magnetic property changes of $DyH_2$, $Cu+DyH_2$, and $Al+DyH_2$ diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusion-treated magnets increases with increasing heat treatment temperature except at $910^{\circ}C$, where it decreases slightly. Moreover, at $880^{\circ}C$, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed $DyH_2$-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only $DyH_2$. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of $790-880^{\circ}C$. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed $DyH_2$, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic $(Nd,\;Dy)_2Fe_{14}B$ phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.