• 제목/요약/키워드: Grain Size

검색결과 4,087건 처리시간 0.026초

오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향 (Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel)

  • 이상인;조윤;황병철
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

역변태 Fe-Cr-Mn계 변태유기소성 스테인레스강의 결정립 크기에 따른 상온인장변형 거동 (Grain Size Dependence of Tensile Deformation at Room Temperature of a Reversely Transformed Fe-Cr-Mn Transformation Induced Plasticity aided Stainless Steel)

  • 최점용;박경태
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.53-60
    • /
    • 2023
  • A wide range of grain size was achieved in a Fe-Cr-Mn austenitic stainless steel (STS) by cold rolling and reversion annealing. The tensile characteristics of the STS were analyzed in terms of the dependence of strain induced martensitic (SIM) transformation on the grain size. In the ultrafine grain regime, the steel showed a high yield strength over 1 GPa, a discontinuous yielding, and a prolonged yield point elongation followed by considerable strain hardening. By increasing the grain size, the discontinuous yielding diminished and the yield point elongation decreased. The microstructural examination revealed that these tensile characteristics are closely related to the suppression of SIM transformation with decreasing the grain size. Especially, the prolonged yield point elongation of the ultrafine grained STS was found to be associated with development of unidirectional ε martensite bands. Based on the microstructural examination of the deformed microstructures, the rationalization of the grain size dependence of SIM transformation was suggested.

입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향 (The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics)

  • 정우환;김진호;조상희
    • 한국세라믹학회지
    • /
    • 제29권1호
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Effects of Atmospheric Powder and Grain Size on Electrical Properties of Lanthanum-modified $PbTiO_3$ Ceramics

  • Byung Sung kang;You, Dong-Joo;Park, Si-Kyung
    • The Korean Journal of Ceramics
    • /
    • 제6권4호
    • /
    • pp.396-400
    • /
    • 2000
  • Dielectric and piezoelectric properties of Pb$_0.9$La$_0.1$TiO$_3$ ceramics were investigated as a function of grain size. Sintering atmosphere was controlled with changing the kind of atmospheric powder and its amount. It was confirmed that dielectric and piezoelectric of Pb$_0.9$La$_0.1$TiO$_3$ were strongly influenced by the sintering atmosphere. Relative dielectric constant of Pb$_0.9$La$_0.1$TiO$_3$ which was sintered in PbO-deficient atmosphere made by Pb$_0.9$La$_0.1$TiO$_3$ powder, increased with the grain size. However, the dielectric constant of the samples sintered in the PbO-sufficient atmosphere made by PbZrO$_3$ powder was slightly decreased with the grain size. Piezoelectric d$_33$ constant of Pb$_0.9$La$_0.1$TiO$_3$ also showed a different trend, depending on the sintering atmosphere. It was almost constant in the range of grain size of 1.3~2.3 $\mu$m when the samples were sintered in the PbO-sufficient atmosphere, while it intensively decreased with the grain size in the case of the PbO-deficient condition.

  • PDF

Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과 (Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$)

  • 이승건
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.807-812
    • /
    • 1998
  • Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

  • PDF

The effect of the initial BSCCO 2212 grain size on the final grain size and the formation of BSCCO 2223

  • Yoo, Jai-Moo;Park, Myoung-Je;Kim, Hai-Doo;Chung, Hyung-Sik;Ko, Jae-Woong
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.285-288
    • /
    • 2000
  • The effect of the initial BSCCO 2212 grain size on the final gain size and the formation of the BSCCO 2223 was studied using a powder precursor synthesized by two-powder method. 2212 and CaCuO$_2$ tapes were prepared by dip coating and joined by pressing and then followed by the repeated thermo mechanical treatment. The samples were characterized by XRD and SEM analysis. The formation and grain size of the BSCCO 2223 depended on the initial BSCCO 2212 grain size.

  • PDF

Comparison of different measuring methods for the determination of the particle size of powders for plasma spraying

  • 석한길
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 추계학술발표대회 개요집
    • /
    • pp.220-222
    • /
    • 2001
  • The average grain size, the grain-size distribution, the morphology and the microstructure are fundamental characteristics of a spraying powder. Now that the significance of the grain size for the pattern of properties of the powder has been recognised, greater consideration is also being given to it in standards and regulations. However, unfortunately, the processes according to which the grain size and the grain-size distribution must be determined are specified in the rarest of cases. The contribution therefore dealt with the comparison of different particle-size measuring techniques, such as diffraction spectroscopy, sedimentation, sieving and microscopic measurement. The comparability of the measured results was investigated on twelve plasma spraying powders with different compositions, nominal sizes and morphologies.

  • PDF

구리 박막 제조중 증착 중단시 박막 결정립 크기 변화가 인장응력 방향으로의 응력 이동에 미치는 영향 (The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films)

  • 이세리;오승근;김영만
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.303-310
    • /
    • 2014
  • In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.

나노결정립 금속재료의 변형기구지도 (Deformation Mechanism Map of Nanocrystalline Metallic Materials)

  • 윤승채;복천회;곽은정;김형섭
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.473-478
    • /
    • 2007
  • In this study, a deformation mechanism map of metallic nanocrystalline materials(NCMs) using the phase mixture model is proposed. It is based on recent modeling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NCMs. The proposed models adopted the concept of a 'phase mixture' in which the grain interior and the grain boundaries are treated as separate phases. The volume fraction of this grain boundary 'phase' may be quite appreciable in a NCM. Based on the theoretical model that provides an adequate description of the grain size dependence of plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NCMs, especially focusing on the deformation mechanisms was investigated. The deformation mechanism map is newly proposed with axes of strain rate, grain size and temperature.

온간 단조기에서의 소성변형과 결정입자 변화와의 관계 (Study on the relationship between Plastic Deformation and Crystal Grain Change in Warm Forging)

  • 이해영;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.100-123
    • /
    • 1995
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM100 carbon steel is studied. If the carbon steel is deformed in warm forging temperature (about recrystallization range), the crystal grain and cementite of the internal part are changed, so material properties are changed. Some experimental values, such as the elliptic degree of cementite, the grain size of cementitie and ferrite grain size, are investigated. When the plastic deformation proceeds, the elliptic degree of cementite becomes large, the grain size of cementite particle is small, and the size of ferrite grain appears fine by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging is calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result. At effective strain 0.3 dynamic recovery and dynamic recrystallization begin, over 2.5 the organization of material has better quality that is suitable for the following cold forming.