Browse > Article
http://dx.doi.org/10.5228/KSPP.2007.16.6.473

Deformation Mechanism Map of Nanocrystalline Metallic Materials  

Yoon, S.C. (충남대학교 나노공학부)
Bok, C.H. (충남대학교 나노공학부)
Kwak, E.J. (충남대학교 나노공학부)
Kim, H.S. (충남대학교 나노공학부)
Publication Information
Transactions of Materials Processing / v.16, no.6, 2007 , pp. 473-478 More about this Journal
Abstract
In this study, a deformation mechanism map of metallic nanocrystalline materials(NCMs) using the phase mixture model is proposed. It is based on recent modeling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NCMs. The proposed models adopted the concept of a 'phase mixture' in which the grain interior and the grain boundaries are treated as separate phases. The volume fraction of this grain boundary 'phase' may be quite appreciable in a NCM. Based on the theoretical model that provides an adequate description of the grain size dependence of plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NCMs, especially focusing on the deformation mechanisms was investigated. The deformation mechanism map is newly proposed with axes of strain rate, grain size and temperature.
Keywords
Nanocrystalline Materials; Deformation Mechanism; Phase Mixture Model; Constitutive Equation; Dislocation Glide; Diffusion; Grain Size; Strain Rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, M. Chen, F. Zhou, E. Ma, 2002, High tensile ductility in a nanostructured metal, Nature, Vol. 419, pp. 912-915   DOI   ScienceOn
2 H. S. Kim, M. B. Bush, 1999, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials, Nanostruct. Mater., Vol. 11, pp. 361-367   DOI   ScienceOn
3 H. S. Kim, M. B. Bush, Y. Estrin, 2000, A phase mixture model of a particle reinforced composite with fine microstructure, Mater. Sci. Eng. A, Vol. 276, pp. 175-185   DOI   ScienceOn
4 H. S. Kim, Y. Estrin, M. B. Bush, 2001, Constitutive modeling of strength and plasticity of nanocrystalline metallic materials, Mater. Sci. Eng. A, Vol. 316, pp. 195-199   DOI   ScienceOn
5 H. S. Kim, Y. Estrin, M. B. Bush, 2000, Plastic deformation behavior of fine grained materials, Acta Mater., Vol. 48, pp. 493-504   DOI   ScienceOn
6 H. S. Kim, Y. Estrin, 2005, Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials, Acta Mater., Vol. 53, pp. 765-772   DOI   ScienceOn
7 Y. Estrin, 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press, New York, p. 69
8 N. Wang, Z. Wang, K. T. Aust, U. Erb, 1995, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metal!. Mater., Vol, 43, pp. 519-528   DOI   ScienceOn
9 A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, 1989, On the validity of the Hall-Petch relationship in nanocrystalline materials, Scripta Metall., Vol. 23, pp. 1679-1683   DOI   ScienceOn
10 R. Z. VaIiev, 2001, Developing SPD methods for processing bulk nanostructured materials with enhanced properties, Metal. Mater. Inter. Vol. 7, pp. 413-420   DOI
11 H. S. Kim, 1998, A composite model for hardness of nanocrystalline materials, J. Kor. Inst. Met. & Mater., Vol. 36, pp. 2080-2084
12 K. S. Kumar, H. V. Swygenhoven, S. Suresh, 2003, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., Vol. 51, pp. 5743-5774   DOI   ScienceOn
13 H. V. Swygenhoven, P. M. Derlet, A. G. Froseth, 2004, Stacking fault energies and slip in nanocrystalline metal, Nature Mater., Vol. 3, pp. 399-403   DOI   ScienceOn
14 V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, 2002, Grain-boundary diffusion creep in nanocrystalline palladium by molecular dynamics simulation, Acta Mater., Vol. 50, pp. 61-73   DOI   ScienceOn
15 H. S. Kim, 1998, A composite model for mechanical properties of nanocrystalline materials, Scripta Mater., Vol. 39, pp. 1057-1061   DOI   ScienceOn
16 H. J. Frost, M. F. Ashby, Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Cambridge University, UK