• Title/Summary/Keyword: Grain Design

Search Result 473, Processing Time 0.025 seconds

Design and comparative study of various Two-Dimensional Grain Configurations based on Optimization Method

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.226-234
    • /
    • 2008
  • Grain design has always been a vital and integral part of Solid Rocket Motor(SRM) design. Basing on the design objectives set by the system designer, the SRM designer has many options available for selecting the Grain configuration. Many of the available configurations may fulfill the required parameters of volumetric loading fraction, web fraction & Length to diameter ratios and produce internal ballistic results that may be in accordance to the design objectives. However, for any given set of design objectives, it is deemed necessary that best possible configuration be selected, designed and optimized. Hence optimal results of all applicable configurations are vital to be attained in order to compare and finalize the design that will produce most efficient performance. Generally the engineers pay attention and have skills on a specific grain configuration. The designing methodologies and computer codes available usually focus on single grain configuration may it be Star, Wagon Wheel or slotted tube. Hardly one can find a software or a design methodology where all such configurations can be worked on jointly and not only adequate designs be found but optimal solutions reached by applying an optimization method to find final design best suited for any design objective. In the present work design requirements have been set, grain configurations have been selected and their designing has been conducted. The internal ballistic parameters have been calculated and after finding the preliminary design solutions, the optimal solutions have been found. In doing so, software has been developed comprising of computer programs for designing the 2D grains including Star, Wagon Wheel and Slotted Tube configurations. The optimization toolbox of Matlab Fmincon has been used for getting optimal solutions. The affects of all the independent geometric design variables on the optimized solutions have been analyzed. Based on results attained from Optimization Method, an in depth comparison of Grain Configurations and analysis of performance prediction outputs have been conducted to come to conclusion as to which grain configuration is ideal for the current design requirement under study.

  • PDF

Study of Hybrid Optimization Technique for Grain Optimum Design

  • Oh, Seok-Hwan;Kim, Yong-Chan;Cha, Seung-Won;Roh, Tae-Seong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.780-787
    • /
    • 2017
  • The propellant grain configuration is a design variable that determines the shape and performance of a solid rocket motor. Grain configuration variables have complicated effects on the motor performance; so the global optimization problem has to be solved in order to design the configuration variables. The grain performance has been analyzed by means of the grain burn-back and internal ballistic analysis, and the optimization technique searches for the configuration variables that satisfy the requirements. The deterministic and stochastic optimization techniques have been applied for the grain optimization, but the results are imperfect. In this study, the optimization design of the configuration variables has been performed using the hybrid optimization technique, which combines those two techniques. As a result, the hybrid optimization technique has proved to be efficient for the grain optimization design.

A NEW APPROACH FOR DESIGN AND OPTIMIZATION OF SRM WAGON WHEEL GRAIN

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.247-254
    • /
    • 2008
  • The primary objective of this research is to develop an efficient design and optimization methodology for SRM Wagon Wheel Grain and to develop of software for practical designing and optimization of Wagon Wheel grains. This work will provide a design process reference guide for engineers in the field of Solid Rocket Propulsion. Using these proposed design methods, SRM Wagon Wheel grains can be designed for various geometries, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design in least possible iterations & time. The main focus is to improve computational efficiency at various levels of the design work. These have been achieved by the following way. a. Evaluation of system requirements and design objectives. b. Development of Geometric Model of Wagon Wheel grain configuration. c. Internal ballistic performance predictions. d. Preliminary designing of the Wagon Wheel grain configuration involving various independent geometric variables. e. Optimization of the grain configuration using Sequential Quadratic Programming f. In depth analysis of the optimal results considering affects of various geometric variables on ballistic parameters and analysis of performance prediction outputs have been performed g. Development of software for design and optimization of Wagon Wheel Grain. By using these proposed design methods, SRM Wagon Wheel grains can be designed by using geometric model, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design.

  • PDF

Grain Geometry, Performance Prediction and Optimization of Slotted Tube Grain for SRM

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.293-300
    • /
    • 2008
  • Efficient designing of SRM Grains in the field of Rocketry is still the main test for most of the nations of world for scientific studies, commercial and military applications. There is a strong need to enhance thrust, improve the effectiveness of SRM and reduce mass of motor and burning time so as to allow the general design to increase the weight of payload/on board electronics. Moreover burning time can be increased while keeping the weight of the propellant and thrust in desired range, so as to give the time to control / general design group in active phase for incorporating delayed cut off if required. A mathematical design, optimization & analysis technique for Slotted Tube Grain has been discussed in this paper. In order to avoid the uncertainties that whether the Slotted Tube grain configuration being designed is best suited for achieving the set design goals and optimal of all the available designs or not, an efficient technique for designing SRM Grain and then getting optimal solution is must. The research work proposed herein addresses and emphasizes a design methodology to design and optimize Slotted Tube Grain considering particular test cases for which the design objectives and constraints have been given. In depth study of the optimized solution have been conducted thereby affects of all the independent parametric design variables on optimal solution & design objectives have been examined and analyzed in detail. In doing so, the design objectives and constraints have been set, geometric parameters of slotted tube grain have been identified, performance prediction parameters have been calculated, thereafter preliminary designs completed and finally optimal design reached. A Software has been developed in MATLAB for designing and optimization of Slotted Tube grains.

  • PDF

Development of a Solid Fuel Design Automation Program Using Configuration Design Method (편집 설계 방법을 이용한 고체 추진제 형상 설계 자동화 프로그램 개발)

  • Kim, Bo-Hyun;Lee, Kang-Soo;Yang, Joon-Seo;Lee, Do-Hyeong;Oh, Seok-Jin;Kwon, Hyuk-Sun;Kim, Sung-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.372-381
    • /
    • 2008
  • We developed a design automation system to reduce the lead time and help engineers in designing a solid fuel, or a grain, for rocket missiles. First, we analyzed design activities and shapes of a grain, which resulted in the standard of design process and shape. We decided development process which consisted of two typical activities such as constructing master library and implementing design system. We constructed some master models for typical external shapes and core shapes of grains which were used in modeling the shape of a designing grain. Also we implemented a design automation program to use the master models according to the pre-defined design process. It can calculate some design parameters such as mass, mass center, volume and combustion area that are used in analyzing a proposed grain. Finally, we could reduce the design time dramatically and increase design quality by automating many routine and difficult works.

Application of adaptive neuro-fuzzy system in prediction of nanoscale and grain size effects on formability

  • Nan Yang;Meldi Suhatril;Khidhair Jasim Mohammed;H. Elhosiny Ali
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.155-164
    • /
    • 2023
  • Grain size in sheet metals in one of the main parameters in determining formability. Grain size control in industry requires delicate process control and equipment. In the present study, effects of grain size on the formability of steel sheets is investigated. Experimental investigation of effect of grain size is a cumbersome method which due to existence of many other effective parameters are not conclusive in some cases. On the other hand, since the average grain size of a crystalline material is a statistical parameter, using traditional methods are not sufficient for find the optimum grain size to maximize formability. Therefore, design of experiment (DoE) and artificial intelligence (AI) methods are coupled together in this study to find the optimum conditions for formability in terms of grain size and to predict forming limits of sheet metals under bi-stretch loading conditions. In this regard, a set of experiment is conducted to provide initial data for training and testing DoE and AI. Afterwards, the using response surface method (RSM) optimum grain size is calculated. Moreover, trained neural network is used to predict formability in the calculated optimum condition and the results compared to the experimental results. The findings of the present study show that DoE and AI could be a great aid in the design, determination and prediction of optimum grain size for maximizing sheet formability.

Design of Rolling Path Schedule for Refinement of Austenite Grain (오스테나이트 결정립 미세화를 위한 후판 압연 패스 스케줄의 설계)

  • Hong, Chang-Pyo;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1844-1853
    • /
    • 2001
  • In the present investigation, it was attempted to design the rolling pass schedule fur a clean steel of 0.1C-1.5Mn-0.25Si with the objective of the austenite grain refinement. As the method of approach, a coupled mathematical modeling technique was proposed which consists of a recrystallization model and a flow stress modes. The validity of the coupled model was examined through comparison with results of continuous and discontinuous compression tests at various temperatures, strains and strain rates. The coupled model was incorporated with the finite element method to set up a systematic design methodology far the rolling path schedule for austenite grain refinement. Two path schedules were obtained and discussed in the paper with regard to rolling path time, average grain size, grain size deviation in thickness, etc.

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation

  • Liu, Kai;Long, Xiangyun;Li, Bochuan;Xiao, Xiazi;Jiang, Chao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2960-2967
    • /
    • 2021
  • In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.

Grain Structure Analysis in Rolled 1050 Al Alloy Sheets Using EBSD (EBSD에 의한 A1050 압연판재의 결정립 구조 분석)

  • Han, Jun-Hyun;Shin, Myung-Chul
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.50-58
    • /
    • 2001
  • The effect of cryogenic heavy rolling method on grain refinement has been studied and compared with those obtained by previous methods of cryogenic rolling and heavy rolling developed separately. Both grain structure and grain size were analyzed using electron back scattered diffraction (EBSD), which can distinguish grains each other by means of crystallographic misorientations between them. The cryogenic rolling and heavy rolling exhibit reduction in grain size of 39% and 87%, respectively, and the cryogenic heavy rolling shows reduced grain size similar to that observed in the heavy rolling. The heavy rolling was proved more effective in grain size refinement than the cryogenic rolling.

  • PDF

Development of an Integrated Design System for Solid Rocket Motors (고체 추진기관 통합 설계 시스템 개발)

  • Lee, Kang-Soo;Kim, Won-Hoon;Hwang, Tae-Kyung;Bae, Joo-Chan;Yang, June-Seo;Lee, Do-Hyeong;Seok, Jung-Ho;Choi, Byeong-Wook;Kwon, Hyuk-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-210
    • /
    • 2008
  • We developed an integrated design system for a solid rocket motors. We can do a conceptual design of a solid rocket motor easily and quickly with this system. It consists of four modules, or, size design, structure design, grain design and performance analysis module. Size design module determines the lengths and diameters of some major parts, which results in fixing the whole size of a motor. Structure design module has many master models, which enables a designer can do a conceptual design of almost parts of motor structures. Grain design module can design a solid fuel according to the result of structure design. Finally performance analysis module verifies the proposed design with the output from grain design module.

  • PDF