• Title/Summary/Keyword: Grain Boundary Energy

Search Result 212, Processing Time 0.017 seconds

Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels (11 wt% 크롬이 함유된 Ti 첨가 페라이트스테인리스강의 입계부식에 미치는 규소의 영향)

  • Hyun, Youngmin;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-273
    • /
    • 2013
  • Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than $650^{\circ}C$ and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.

Grain Boundary Migration and Grain Shape Change Induced by Alloying of $PbZrO_3$ and $PbTiO_3$ in PZT Ceramics (PZT 세라믹스에서 $PbZrO_3$$PbTiO_3$ 첨가에 의한 입계이동과 입자모양 변화)

  • 허태무;김재석;이종봉;이호용;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2000
  • When PbZrO3 (PZ) and PbTiO3 (PT) particles were scattered on polished surfaces of sintered Pb(Zr0.52Ti0.48)O3 (PZT; Zr/Ti=1.08) and then annealed, the PZT grain boundaries migrated. Near the scattered particles, grain boundaries were corrugated and thus the grain shape changed from a normal one to irregular ones. Especially, near the scattered PZ particles, fast grain growth occurred. In the regions swept by moving grain boundaries, the Zr/Tiratio was measured to be about 1.35 for of PZ scattering and about 0.8 for PT scattering, respectively. This result indicates that the grain boundary migration was induced by alloying of Zr and Ti ions in PZT grains, as in usual diffusion induced grain boundary migration(DIGM). A calculation showed that higher coherency strain energy was induced for PT scattering because of higher alloying of Ti than of Zr.

  • PDF

Computer simulation of the effects of anisotropic grain boundary energy on grain growth in 2-D (이방성 결정립 계면에너지의 2차원 결정립 성장에 미치는 효과에 대한 컴퓨터 모사)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.178-182
    • /
    • 2012
  • The grain growth is very important because of its great influence on the various materials properties. Therefore, in this study, the effects of anisotropic grain boundary energy on grain growth in 2-D have been investigated with a large scale phase field simulation model on PC. A $2000{\times}2000$ grid system and the initial number of grains of about 73,000 were used in the computer simulation. The anisotropic ratio of grain boundary energy, ${\sigma}_{max}/{\sigma}_{min}$, has been varied from 1 to 3. As the anisotropy increased, the grain growth exponent, n, increased from 2.05 to 2.37. The grain size distribution showed a central plateau in the isotropic case, and was changed into no central plateau and the increasing population of very small grains in the anisotropic case, resulting from slowly disappearing grains. Finally, simulated microstructures were compared according to anisotropy.

A STUDY ON THE BEHAVIOR OF BORON DISTRIBUTION IN LOW CARBON STEEL BY PARTICLE TRACKING AUTORADIOGRAPHY

  • Mun, Dong-Jun;Shin, Eun-Joo;Koo, Yang-Mo
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The behavior of the non-equilibrium grain boundary segregation of boron in low carbon steel was studied through a particle tracking autoradiography. The behavior of the non-equilibrium grain boundary segregation of boron during continuous cooling was compared with the isothermal kinetics of the non-equilibrium grain boundary segregation of boron at the holding temperature using an effective time method. On the basis of the experiments, the cooling rate dependence of the non-equilibrium segregation of boron was explained using the time dependence of the non-equilibrium segregation of boron in low carbon steel. The experimental observations for the cooling rate dependence of the grain boundary segregation of boron are in good agreement with the time dependence of the grain boundary segregation of boron. The mechanisms of the non-equilibrium segregation of boron during cooling in low carbon steel are also discussed.

The study of Grain boundary diffusion effect in Tin/Cu by Xps (XPS를 이용한 TiN/Cu의 Grain boundary diffusion 연구)

  • 임관용;이연승;정용덕;이경민;황정남;최범식;원정연;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.112-117
    • /
    • 1998
  • TiN has been investigated as a good candidate for a diffusion barrier of Cu. Therefore, in this study, the grain boundary diffusion of Cu in TiN film was investigated by X-ray photoelectron spectroscopy(XPS). In general, TiN has a columnar grain structure. In the relatively lower temperature, less than 1/3 of the melting point, it was observed that Cu diffused into TiN mainly along the grain boundaries of TiN. The grain size of TiN was measured by atomic force microscope (AFM). In order to estimate the grain boundary diffusion constants, we used the modified surface accumulation method. The activation energy, $Q_b$ was 0.23 eV, and the diffusivity, $D_{bo}$ was $5.5\times10^{-12{\textrm{cm}^2$/sec.

  • PDF

Effect of Grain Boundary Energy on the Shrinkage Rate of Solid State Sintering (고상소결중의 수축률 변화에 미치는 입계에너지의 영향)

  • 윤한호;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • The shrinkage rate of solid state sintering has been theoretically derived by combining the rate equation of material transport and the net free energy change resulting from the decrease of solid-vapor interface and the increase of grain boundary during sintering. For a sinteing model an idealized situation of the spherical particles with BCC packing was taken as the initial condition and the shrinkage was assumed to occur by forming the flat circualr grain boundaries on each particle. The plotted shrinkage rates as a function of grain boundary to surface energy ratio $(gamma_g/gamma_s)$ have shown that the relative density increases linearly at the initial stage of sintering but the shrinkage rate is decreased upon further sintering due to a decrease in driving force for densificaton. It has been also shown that the densification is critically affected by the $gamma_g/gamma_s$ ratio. In order to get the complete densificatin the ratio should be less than $sqrt{3}$. Any additive or atmospheric condition causing the decrease of$_g/gamma_s$ ratio will enhance sintering.

  • PDF

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

ROLE OF GRAIN BOUNDARY CARBIDES IN CRACKING BEHAVIOR OF Ni BASE ALLOYS

  • Hwang, Seong Sik;Lim, Yun Soo;Kim, Sung Woo;Kim, Dong Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • The primary water stress corrosion cracking (PWSCC) of Alloy 600 in a PWR has been reported in the control rod drive mechanism (CRDM), pressurizer instrumentation, and the pressurizer heater sleeves. Recently, two cases of boric acid precipitation that indicated leaking of the primary cooling water were reported on the bottom head surface of steam generators (SG) in Korea. The PWSCC resistance of Ni base alloys which have intergranular carbides is higher than those which have intragranular carbides. Conversely, in oxidized acidic solutions like sodium sulfate or sodium tetrathionate solutions, the Ni base alloys with a lot of carbides at the grain boundaries and shows less stress corrosion cracking (SCC) resistance. The role of grain boundary carbides in SCC behavior of Ni base alloys was evaluated and effect of intergranular carbides on the SCC susceptibility were reviewed from the literature.

Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment (PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동)

  • Lim, Yun Soo;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-150
    • /
    • 2012
  • Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.