• Title/Summary/Keyword: Grain, Grain size

Search Result 4,071, Processing Time 0.028 seconds

Effect of Austenite Grain Size on Ms temperature of γ→ε Martensitic Transformation in an Fe-Mn Alloy (Fe-Mn 합금에서 γ→ε 마르텐사이트 변태의 Ms 온도에 미치는 오스테나이트 결정립크기의 영향)

  • Jun, Joong-Hwan;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.93-100
    • /
    • 1997
  • Effect of austenite grain size on starting temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation($M_s$) has been studied in an Fe-18%Mn alloy. Particular attention was paid on the variation of stacking fault energy with austenite grain size, which is considered to be a important factor affecting ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation. Austenite grain size was increased in a wide range from $13{\mu}m$ to $185{\mu}m$ with increasing solution treatment temperature from $700^{\circ}C$ to $1100^{\circ}C$. Hardness was decreased with increasing austenite grain size while the volume fraction of ${\varepsilon}$ martensite showed a reverse tendency, which indicates that the hardness is more dependent on austenite grain size than ${\varepsilon}$ martensite content. No significant change was found in $M_s$ temperature when the grain size was larger than about $30{\mu}m$. In case that, the austenite grain size was smaller than about $30{\mu}m$, however, $M_s$ temperature was marlkedly decreased with decreasing austenite grain size. A linear relationship between $M_s$ temperature and the stacking fault formation probability, i.e. the reciprocal of the stacking fault energy was obtained, which suggests that the variation of $M_s$ temperature with austenite grain size is closely related to the change in stacking fault energy.

  • PDF

Grain size measurement based on marked watershed algorithm (유역분할 알고리즘을 이용한 결정립 크기 측정)

  • Kim, Beomsoo;Yoon, Sangdoo;Kwon, Jaesung;Choi, Sungwoong;Noh, Jungpil;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.403-407
    • /
    • 2022
  • Grain size of material is important factor in evaluating mechanical properties. Methods for grain size determination are described in ASTM grain size standards. However, conventional method require pretreatment of the surface to clarify grain boundaries. In this study, the grain size from the surface image obtained from scanning electron microscope was measured using the watershed algorithm, which is a region-based method among image segmentation techniques. The shapes of the crystals are similar to each other, but the size and growth height are different. In addition, crystal grains are adjacent to each other, so it is very similar to the shape image of the topography. Therefore, grain boundaries can be efficiently detected using the Watershed algorithm.

Grain Size Analysis Using Morphological Properties of Grains (입자의 형태적 특성을 활용한 퇴적물 입도분석)

  • Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.19-28
    • /
    • 2020
  • Grain size analysis is the most basic procedure for identifying the origin, transport and sedimentation processes of sediments, and is widely used in geomorphology and sedimentology. Traditionally, grain size was determined by a sieve-pippette method, but the use of automated analyzers is increasing in recent years. These analyzers have many advantages over traditional techniques, but the measurement results are not always the same. It is still difficult to solve the pretreatment problem such as incomplete diffusion and residual organic matter, and inappropriate results may be obtained. This study compared image-based grain size analysis and sieve analysis to verify its statistical reliability, and conducted experiments to enhance the measurement accuracy using shape parameters. The results showed that the image-based analysis overestimated the grain size of sand dunes by about 7% compared to the sieve analysis, but the two measurements were not statistically different. In addition, by using shape parameters, such as aspect ratio, sphericity, and convexity, improved statistics were obtained compared to the original data. Using the morphological properties of the individual grains is a complementary method to the incomplete pretreatment of the grain size analysis process, and at the same time, it will contribute to improving the accuracy and reliability of the results.

Prediction model for prior austenite grain size in low-alloy steel weld HAZ (용접열영향부 호스테나이트 결정립 크기 예측 모델링)

  • 엄상호;문준오;이창희;윤지현;이봉상
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.43-45
    • /
    • 2003
  • The empirical model for predicting the prior austenite grain size in low-alloy steel weld HAZ was developed through examining the effect of alloying element. The test alloys were made by vacuum induction melting. Grain growth behaviors were observed and analyzed by isothermal grain growth test and subsequent metallography. As a result, it was found that the grain growth might be controlled by grain boundary diffusion and the empirical model for grain growth was presented.

  • PDF

Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.807-812
    • /
    • 1998
  • Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

  • PDF

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel (오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Cho, Yun;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

Grain Size Dependence of Tensile Deformation at Room Temperature of a Reversely Transformed Fe-Cr-Mn Transformation Induced Plasticity aided Stainless Steel (역변태 Fe-Cr-Mn계 변태유기소성 스테인레스강의 결정립 크기에 따른 상온인장변형 거동)

  • J. Y. Choi;K-T. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • A wide range of grain size was achieved in a Fe-Cr-Mn austenitic stainless steel (STS) by cold rolling and reversion annealing. The tensile characteristics of the STS were analyzed in terms of the dependence of strain induced martensitic (SIM) transformation on the grain size. In the ultrafine grain regime, the steel showed a high yield strength over 1 GPa, a discontinuous yielding, and a prolonged yield point elongation followed by considerable strain hardening. By increasing the grain size, the discontinuous yielding diminished and the yield point elongation decreased. The microstructural examination revealed that these tensile characteristics are closely related to the suppression of SIM transformation with decreasing the grain size. Especially, the prolonged yield point elongation of the ultrafine grained STS was found to be associated with development of unidirectional ε martensite bands. Based on the microstructural examination of the deformed microstructures, the rationalization of the grain size dependence of SIM transformation was suggested.

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

EFFECTS OF CO CONTENT AND WC GRAIN SIZE ON WEAR OF WC CEMENTED CARBIDE

  • Saitoh, Hiroyuki;Iwabuchi, Akira;Shimizu, Tomoharu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.213-214
    • /
    • 2002
  • WC cemented carbide are used as many die material to improve abration resistance. Mechanical properties of the cemented carbide were influenced by Co content and WC grain size. In this study, effects of Co content and WC grain size of WC cemented carbide on wear were examied. We prepared 13 cemented carbides with different Co content and WC grain size. Wear test was carried out against S45C under dry condition at 98N and 232mm/s. From the results, we found that wear increased with both Co content and WC grain size. Specific wear rate was range $10^{-7}mm^3/Nm$.

  • PDF

Model Gabion's Pollutant Accumulation Efficiency (모형 Gabion의 오염물질 포착률)

  • Jeong, Jae-Hoon;Jeong, Hae-Won;Yoon, Jung-Hwan;Park, Seung-Ki
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.91-96
    • /
    • 2005
  • This study was performed for the research on the method for reducing non-point pollutant with the gabion which was made of gravel-packed plastic frame, and for the characterization of gabion adsorbing pollutant. The result showed that the concentrations of suspended solid in turbid water were reduced to $77.7{\sim}84.7%$ when the water was flowing through the gabion. The uniformity coefficients on the grain size accumulation curves of the adsorbed pollutant were larger on the large grain size gabion than those on the small grain size gabion, and the coefficients of curvature were smaller on the large grain size gabion than those of the small grain size gabion. The adsorption rates were dependent on the grain size of packed gravel. The rates were smaller on inlet and outlet than those on middle place on the series of gabion.

  • PDF