• 제목/요약/키워드: Gradient-based optimization

검색결과 279건 처리시간 0.025초

축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향 (Effects of the design variables and their constraints on the stage performance of an axial flow turbine)

  • 박호동;정명균
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2109-2124
    • /
    • 1991
  • 본 연구에서는 축류 터빈의 최적 설계 계산에서 사용 용도에 따라 달리 적용 될 수 있는 특정 제한조건, 즉 유량 계수, 압력비, 출력 그리고 하중 계수를 각각 고 려하였을 경우에 최대 효율을 가지기 위한 최적 조건을 계산하고자 한다. 또한 단일 설계 변수의 민감도(sensitivity) 뿐만 아니라, 단일 민감도에서 성능에 큰 영향을 주 는 설계 변수들에 대하여 복수 민감도를 나타내어 설계 변수 및 설계 제한 조건이 축 류 터빈의 성능에 미치는 영향을 조사하고자 한다.

공중발사체를 위한 HTPB/LOX 하이브리드 모터의 최적설계 (Optimal Design of Hybrid Motor with HTPB/LOX for Air-Launch Vehicle)

  • 박봉교;이창진;이재우;이인석
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.53-60
    • /
    • 2004
  • F-4E를 모선으로 하는 초소형 위성을 탑재할 수 있는 공중발사체 1단 부스터용 하이브리드 모터의 최적설계를 실시하였다. 설계변수는 포트개수, 초기 산화제 플럭스, 연소실 압력, 그리고 노즐 팽창비 등을 사용하였다. 또한 서로 다른 최적화 알고리듬의 적용 가능성을 검증하기 위하여 구배법 (GBM)과 유전자 알고리듬 (GA) 방법을 각각 사용하였으며, 목적함수의 선택에 따른 최적화 결과의 변화를 살펴보기 위하여 두 가지 종류의 목적함수 (모터 중량과 모터 길이)를 사용하여 그 결과를 상호 비교하였다. 최적화 알고리듬, 그리고 목적함수의 선택과 무관하게 거의 같은 설계결과로 수렴함을 확인하였다. 최적화결과로 설계요구조건을 만족하는 총중량 704.74kg, 1단 길이 3.74m의 하이브리드 모터를 설계 할 수 있었다.

비용함수와 파라미터를 이용한 효과적인 디지털 데이터 기계학습 방법론 (An efficient machine learning for digital data using a cost function and parameters)

  • 지상민;박지은
    • 디지털융복합연구
    • /
    • 제19권10호
    • /
    • pp.253-263
    • /
    • 2021
  • 기계학습은 학습에 이용되는 학습 데이터와 데이터를 예측할 인공신경망을 이용하여 비용함수를 만들고, 비용함수를 최소화시키는 파라미터들을 찾는 과정이다. 파라미터들은 비용함수의 그래디언트 기반 방법들을 이용하여 변화하게 된다. 디지털 신호가 복잡할수록, 학습하고자 하는 문제가 복잡할수록, 인공신경망의 구조는 더욱 복잡해지고 깊어진다. 복잡하고, 깊어지는 인공신경망 구조는 과적합(Over-fitting) 문제를 발생시킨다. 과적합 문제를 해결하기 위하여 파라미터의 가중치 감소 정규화 방법이 사용되고 있다. 우리는 이러한 방법에서 추가로 비용함수의 값을 이용한다. 이러한 방법으로 기계학습의 정확도가 향상되는 결과를 얻었으며 이는 수치 실험을 통하여 우수성이 확인된다. 이러한 결과는 기계학습을 통한 인공지능의 폭넓은 데이터에 대한 정확한 값을 도출한다.

원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가 (Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

Multiple isocenter를 이용한 뇌정위적 방사선 수술시 컴퓨터 자동 추적 방법에 의한 고속의 선량 최적화 (Rapid Optimization of Multiple Isocenters Using Computer Search for Linear Accelerator-based Stereotactic Radiosurgery)

  • 서태석;박찬일;하성환;윤세철;김문찬;박용휘;신경섭
    • Radiation Oncology Journal
    • /
    • 제12권1호
    • /
    • pp.109-115
    • /
    • 1994
  • 본 연구의 목적은 뇌정위적 방사선수술시 최적 선량분포를 얻기 위하여 빠른 multiple isocenter 계획을 효과적으로 수행할 수 있는 방법을 개발하는 데 있다. 18cm 직경의 구형 머리 팬톰과 정확한 선량 알고리듬을 이용하여 선량값을 계산한 뒤 fltting 기술을 이용하여 빠른 구형선량 모델을 개발하였다. 구형선량 모델을 이용하여 single isocenter에 대한 선량값은 합산에 의하여 쉽게 얻어졌다. Isocenter들간의 이동에 따른 선량분포의 변화를 이용하여 컴퓨터 자동추적 방법이 개발되었으며, isocenter 간격 및 collimator 크기가 빠른 시간내에 결정될 수 있었다. 구형선량모델은 beam data에 의한 선량데이타와 같은 선량분포를 나타냈으며 고속으로 삼차원 선량계산을 가능하게 하였다. 컴퓨터 자동추적 방법은 지금까지의 시행착오적 방법에 비해 보다 빠르게 최적 isocenter setting을 제공할 수 있었다. 구형선량모델 및 컴퓨터 자동추적방법은 multiple isocenter를 이용한 수술 계획시 최적선량 분포를 보다 빨리 얻을 수 있었다.

  • PDF

차분 진화 알고리즘 기반의 SI기법을 이용한 외부 긴장된 텐던의 장력추정 (Tensile Force Estimation of Externally Prestressed Tendon Using SI technique Based on Differential Evolutionary Algorithm)

  • 노명현;장한택;이상열;박대효
    • 대한토목학회논문집
    • /
    • 제29권1A호
    • /
    • pp.9-18
    • /
    • 2009
  • 본 논문은 외부 긴장된 텐던의 장력추정에 대한 차분진화기법의 적용을 소개한다. 제안된 차분진화 알고리즘의 SI기법은 기존의 구배 기반의 최적화 기법과는 다르게 전역해 탐색이 가능하다. 수치실험은 인식변수에 대한 사전정보 없이도, 제안된 차분진화기법이 외부긴장 텐던의 정확한 장력 추정뿐 아니라 유효공칭직경 추정이 가능하여 1%미만의 추정 오차를 갖는 유용한 기법임을 보여준다. 또한 긴장력 손실 유무의 사용 상태를 고려한 축소실험 모델 실험을 이용하여 제안된 기법의 타당성이 실험적으로 검증되었다. 실험의 결과는 긴장력 손실과 무관하게 정확한 장력 추정과 유효공칭직경의 추정뿐 아니라 실험 모델의 감쇠비까지 추정되어 제안된 기법이 적합하고, 효과적인 방법임을 보여준다. 유효공칭 직경의 2% 추정 오차는 실제 꼬여진 단면을 갖는 텐던의 직경과 충실단면을 갖는 FE 모델의 직경의 차이 때문이다. 마지막으로, 기존이론과의 비교 분석으로 제안된 차분진화 기법의 정확성과 우월성이 검증되었다.

자연 프루닝과 베이시안 선택에 의한 신경회로망 일반화 성능 향상 (Improving Generalization Performance of Neural Networks using Natural Pruning and Bayesian Selection)

  • 이현진;박혜영;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.326-338
    • /
    • 2003
  • 신경회로망 설계 및 모델선택의 목표는 최적의 구조를 가지는 일반화 성능이 우수한 네트워크를 구성하는 것이다. 하지만 학습데이타에는 노이즈(noise)가 존재하고, 그 수도 충분하지 않기 때문에 최종적으로 표현하고자 하는 진확률 분포와 학습 데이타에 의해 표현되는 경험확률분포(empirical probability density) 사이에는 차이가 발생한다. 이러한 차이 때문에 신경회로망을 학습데이타에 대하여 과다하게 적합(fitting)시키면, 학습데이타만의 확률분포를 잘 추정하도록 매개변수들이 조정되어 버리고, 진확률 분포로부터 멀어지게 된다. 이러한 현상을 과다학습이라고 하며, 과다학습된 신경회로망은 학습데이타에 대한 근사는 우수하지만, 새로운 데이타에 대한 예측은 떨어지게 된다. 또한 신경회로망의 복잡도가 증가 할수록 더 많은 매개변수들이 노이즈에 쉽게 적합되어 과다학습 현상은 더욱 심화된다. 본 논문에서는 통계적인 관점을 바탕으로 신경회로망의 일반화 성능을 향상시키는 신경회로 망의 설계 및 모델 선택의 통합적인 프로세스를 제안하고자 한다. 먼저 학습의 과정에서 적응적 정규화가 있는 자연기울기 학습을 통해 수렴속도의 향상과 동시에 과다학습을 방지하여 진확률 분포에 가까운 신경회로망을 얻는다. 이렇게 얻어진 신경회로망에 자연 프루닝(natural pruning) 방법을 적용하여 서로 다른 크기의 후보 신경회로망 모델을 얻는다. 이러한 학습과 복잡도 최적화의 통합 프로세스를 통하여 얻은 후보 모델들 중에서 최적의 모델을 베이시안 정보기준에 의해 선택함으로써 일반화 성능이 우수한 최적의 모델을 구성하는 방법을 제안한다. 또한 벤치마크 문제를 이용한 컴퓨터 시뮬레이션을 통하여, 제안하는 학습 및 모델 선택의 통합프로세스의 일반화 성능과 구조 최적화 성능의 우수성을 검증한다.

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.

비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델 (A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs)

  • 원하람;심재승;안현철
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.127-137
    • /
    • 2019
  • 재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.