• Title/Summary/Keyword: Gradient-based interpolation

Search Result 46, Processing Time 0.022 seconds

Super Resolution Image Reconstruction based on Local Gradient and Median Filter (Local Gradient와 Median Filter에 근거한 초해상도 이미지 재구성)

  • Hieu, Tran Trung;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.120-127
    • /
    • 2010
  • This paper presents a SR method using adaptive interpolation based on local gradient features to obtain a high quality SR image. In this method, the distance between the interpolated pixel and the neighboring valid pixel is considered by using local gradient properties. The interpolation coefficients take the local gradient of the LR images into account. The smaller the local gradient of a pixel is, the more influence it should have on the interpolated pixel. And the median filter is finally applied to reduce the blurring and noise of the interpolated HR image. Experiment results show the effectiveness of the proposed method in comparison with other methods, especially in the edge areas of the images.

Content Adaptive Interpolation for Intra-field Deinterlacting (공간적 디인터레이싱을 위한 컨텐츠 기반 적응적 보간 기법)

  • Kim, Won-Ki;Jin, Soon-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1000-1009
    • /
    • 2007
  • This paper presents a content adaptive interpolation (CAI) for intra deinterlacing. The CAI consists of three steps: pre-processing, content classification, and adaptive interpolation. There are also three main interpolation methods in our proposed CAI, i.e. modified edge-based line averaging (M-ELA), gradient directed interpolation (GDI), and window matching method (WMM). Each proposed method shows different performances according to spatial local features. Therefore, we analyze the local region feature using the gradient detection and classify each missing pixel into four categories. And then, based on the classification result, a different do-interlacing algorithm is activated in order to obtain the best performance. Experimental results demonstrate that the CAI method performs better than previous techniques.

THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES

  • Song, Yingwei;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1411-1429
    • /
    • 2016
  • We consider the nite volume element method for elliptic problems using isoparametric bilinear elements on quadrilateral meshes. A gradient recovery method is presented by using the patch interpolation technique. Based on some superclose estimates, we prove that the recovered gradient $R({\nabla}u_h)$ possesses the superconvergence: ${\parallel}{\nabla}u-R({\nabla}u_h){\parallel}=O(h^2){\parallel}u{\parallel}_3$. Finally, some numerical examples are provided to illustrate our theoretical analysis.

Visualization of 4-Dimensional Scattered Data Linear Interpolation Based on Data Dependent Tetrahedrization (4차원 산포된 자료 선형 보간의 가시화 -자료 값을 고려한 사면체 분할법에 의한-)

  • Lee, Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1553-1567
    • /
    • 1996
  • The numerous applications surface interpolation include the modeling and visualization phenomena. A tetrahedrization is one of pre-processing steps for 4-D space interpolation. The quality of a piecewise linear interpolation 4-D space depends not only on the distribution of the data points in $R^2$, but also on the data values. We show that the quality of approximation can be improved by data dependent tetraheadrization through visualization of 4-D space. This paper discusses Delaunary tetrahedrization method(sphere criterion) and one of the data dependent tetrahedrization methods(least squares fitting criterion). This paper also discusses new data dependent criteria:1) gradient difference, and 2) jump in normal direction derivative.

  • PDF

Design of Efficient Gradient Orientation Bin and Weight Calculation Circuit for HOG Feature Calculation (HOG 특징 연산에 적용하기 위한 효율적인 기울기 방향 bin 및 가중치 연산 회로 설계)

  • Kim, Soojin;Cho, Kyeongsoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.66-72
    • /
    • 2014
  • Histogram of oriented gradient (HOG) feature is widely used in vision-based pedestrian detection. The interpolation is the most important technique in HOG feature calculation to provide high detection rate. In interpolation technique of HOG feature calculation, two nearest orientation bins to gradient orientation for each pixel and the corresponding weights are required. In this paper, therefore, an efficient gradient orientation bin and weight calculation circuit for HOG feature is proposed. In the proposed circuit, pre-calculated values are defined in tables to avoid the operations of tangent function and division, and the size of tables is minimized by utilizing the characteristics of tangent function and weights for each gradient orientation. Pipeline architecture is adopted to the proposed circuit to accelerate the processing speed, and orientation bins and the corresponding weights for each pixel are calculated in two clock cycles by applying efficient coarse and fine search schemes. Since the proposed circuit calculates gradient orientation for each pixel with the interval of $1^{\circ}$ and determines both orientation bins and weights required in interpolation technique, it can be utilized in HOG feature calculation to support interpolation technique to provide high detection rate.

Image Interpolation using directional edge weight (방향성 에지 윤곽선 가중치를 이용한 영상 보간)

  • Lee, Ou-Seb;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2010
  • We proposed a new directional edge based interpolation, DEBI, by combining two weighted directional information to reduce blurred edges and annoying artifacts. Four isotropic gradient masks are employed in defining edge directions and they are proven to hold a first order derivative relation with respect to a rotating coordinate. Two minimum gradients among four absolute directional results are shown to be sufficient to describe slant edges efficiently. Compared with widely used bilinear and bicubic interpolation methods, the proposed algorithm results in a noticeable improvement along edge area.

Hybrid Algorithm for Interpolation Based on Macro-block Gray Value Gradient under H.264 (H.264하에서 마크로 블록 그레이 값의 미분을 사용한 인터폴레이션)

  • Wang, Shi;Chen, Hongxin;Yoo, Hyeon-Joong;Kim, Hyong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.274-279
    • /
    • 2009
  • H.264 suggests applying a 2-D 6-tap wiener filter to realize the interpolation for half-pixel positions, followed by a bilinear interpolation to get the data of quarter-pixels precision. This method is comparatively simpler; however, it only considers the affection of 4-connection neighborhood ignoring the influence that comes from the changing rate between respective neighborhoods. As a result, it has the characteristics of a Low-pass filter under the risk of losing high-frequency weights. The Cubic interpolation uses the gray-values within the larger regions of points to be sampled for interpolation. Nevertheless, the cubic interpolation is more complicated and computational. We give a deep analysis on the features while applying both bilinear and cubic interpolation in H.264 presenting a proper selection of interpolation algorithm with respect to specific distribution of gray-value in a certain grand block. The experiments point out that load far motion searching and interpolation are reduced when promoting the precision of interpolation simultaneously.

Assessment of Gradient-based Digital Speckle Correlation Measurement Errors

  • Jian, Zhao;Dong, Zhao;Zhe, Zhang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.372-380
    • /
    • 2012
  • The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.

COLOR PENCIL SKETCH IMAGE GENERATION BASED ON FILTERING AND LINEAR INTERPOLATION (필터링과 선형보간을 이용한 색연필스케치영상 생성)

  • HITIMANA, Eric;Gwun, Oubong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.623-625
    • /
    • 2012
  • In this paper, we present a method to automatically generate a color pencil sketch image from a photo. First the image is converted into a sketch using a gradient estimation and then the color pencil sketch is produced by linear interpolation with original image and the sketched image. The experimental results show that the final image has a visual aspect of a color pencil sketch like image.