• Title/Summary/Keyword: Gradient-Based Perturbation

Search Result 27, Processing Time 0.03 seconds

Multi-Robot Path Planning for Environmental Exploration/Monitoring (미지 환경 탐색 및 감시를 위한 다개체 로봇의 경로계획)

  • Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.413-418
    • /
    • 2012
  • This paper presents a multi-robot path planner for environment exploration and monitoring. Robotics systems are being widely used as data measurement tools, especially in dangerous environment. For large scale environment monitoring, multiple robots are required in order to save time. The path planner should not only consider the collision avoidance but efficient coordination of robots for optimal measurements. Nonlinear spring force based planning algorithm is integrated with the spatial gradient following path planner. Perturbation/Correlation based estimation of spatial gradient is applied. An algorithm of tuning the stiffness for robot coordination is presented. The performance of the proposed algorithm is discussed with simulation results.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

Autonomous Drone Path Planning for Environment Sensing

  • Kim, Beomsoo;Lee, Sooyong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.209-215
    • /
    • 2018
  • Recent research in animal behavior has shown that gradient information plays an important role in finding food and home. It is also important in optimization of performance because it indicates how the inputs should be adjusted for maximization/minimization of a performance index. We introduce perturbation as an additional input to obtain gradient information. Unlike the typical approach of calculating the gradient from the derivative, the proposed processing is very robust to noise since it is performed as a summation. Experimental results prove the validity of the process of spatial gradient acquisition. Quantitative indices for measuring the effect of the amplitude and the frequency are developed based on linear regression analysis. Drones are very useful for environmental monitoring and an autonomous path planning is required for unstructured environment. Guiding the drone for finding the origin of the interested physical property is done by estimating the gradient of the sensed value and generating the drone trajectories in the direction which maximizes the sensed value. Simulation results show that the proposed method can be successfully applied to identify the source of the physical quantity of interest by utilizing it for path planning of an autonomous drone in 3D environment.

Robust Stabilization Algorithms of Plants Subject to Structured Parameter Perturbations (내개 변수 섭동 구조를 갖는 플랜트의 강인 안정화 알고리즘)

  • 황유섭;이상혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 1989
  • This paper is concerned with robust stabilization of single input or single output systems. Based on the region of non-destabilizing perturbations some approaches to design which allow the given of structured perturbation of plant parameters and their gradient optimization are given. These algorithms iteratively enlarge the stability hypershere in plant parameter space and can be used to design a controller to stabilize a plant subject to given ranges of parameter excursions.

  • PDF

A new conjugate gradient method for dynamic load identification of airfoil structure with randomness

  • Lin J. Wang;Jia H. Li;You X. Xie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.301-309
    • /
    • 2023
  • In this paper, a new modified conjugate gradient (MCG) method is presented which is based on a new gradient regularizer, and this method is used to identify the dynamic load on airfoil structure without and with considering random structure parameters. First of all, the newly proposed algorithm is proved to be efficient and convergent through the rigorous mathematics theory and the numerical results of determinate dynamic load identification. Secondly, using the perturbation method, we transform uncertain inverse problem about force reconstruction into determinate load identification problem. Lastly, the statistical characteristics of identified load are evaluated by statistical methods. Especially, this newly proposed approach has successfully solved determinate and uncertain inverse problems about dynamic load identification. Numerical simulations validate that the newly developed method in this paper is feasible and stable in solving load identification problems without and with considering random structure parameters. Additionally, it also shows that most of the observation error of the proposed algorithm in solving dynamic load identification of deterministic and random structure is respectively within 11.13%, 20%.

A MULTILEVEL BLOCK INCOMPLETE CHOLESKY PRECONDITIONER FOR SOLVING NORMAL EQUATIONS IN LINEAR LEAST SQUARES PROBLEMS

  • Jun, Zhang;Tong, Xiao
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.59-80
    • /
    • 2003
  • An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are form to solve linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed implicitly. A diagonal perturbation strategy is implemented to enhance factorization robustness. The factors obtained are used as a preconditioner for the conjugate gradient method. Numerical experiments are used to show the robustness and efficiency of this preconditioning technique, and to compare it with two other preconditioners.

Benthic Pollution Assessment Based on Macrobenthic Community Structure in Gamak Bay, Southern Coast of Korea

  • Koo, Bon-Joo;Je, Jong-Geel;Shin, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.11-22
    • /
    • 2004
  • Benthic pollution assessment based on macrobenthic community structure with environmental variables was carried out at twelve stations during two periods on a presumed pollution gradient in Gamak Bay. Univariate and multivariate methods were applied to investigate structural changes in the benthic communities. A clear gradient of pollution effects on the macrobenthic community was observed from the interior to the exterior of the bay. The community on the northwestern basin was severely disturbed due to a low level of hydrodynamics and a large amount of pollutant input from nearby cities. Exterior regions on the southern basin appeared to have the best benthic environmental characteristics among all stations according to most methods of analysis. Central ridge regions and two stations around the islets in the mouth of the bay exhibited intermediate levels of perturbation when compared to the more disturbed interior and undisturbed exterior regions. Pollution effects on the communities were attenuated at the southern area of the central ridge during spring compared to those of summer, where aquacultural farming was densely distributed. The environmental variables primarily correlated to the macrobenthic community structure were total organic carbon (C), organochlorine pesticides (OCPs), and tributyltins (TBTs), contents found on the surface sediment, as anthropogenic variables indicating organic materials.

Adaptive Nulling Algorithm for Null Synthesis on the Moving Jammer Environment (이동형 재밍환경에서 널 합성을 위한 적응형 널링 알고리즘)

  • Seo, Jongwoo;Park, Dongchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.676-683
    • /
    • 2016
  • In this paper, an adaptive nulling algorithm which can be used to form nulls in the direction of jammer or interference signals in array antennas of single port system is proposed. The proposed adaptive algorithm does not require a priori knowledge of the incoming signal direction and can be applied to the partially adaptive arrays. This algorithm is the combination of the PSO(Particle Swam Optimization) algorithm and the gradient-based perturbation adaptive algorithm, which shows stable nulling performance adaptively even on the moving jammer environment where the incident direction of the interference signal is changing with time.

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

Issues Involved In The Study Of The Voltage Stability of A Power System Network Modeled By DAE

  • Lee, Byong-Jun;Song, Kil-Yeong;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.6-8
    • /
    • 1994
  • In this paper an attempt is made to understand the voltage stability when the power system networks are represented by the differential-algebraic equations (DAEs) form. The problem is analyzed by interpreting the shape of constraint manifold, based on the singular perturbation model. The global picture or constraint manifold is given to show how the local shape or constraint manifold can be used to guess for the system behavior. The gradient analysis is used systematically to obtain a local shape or the constraint manifold.

  • PDF