• Title/Summary/Keyword: Gradient model

Search Result 1,603, Processing Time 0.042 seconds

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

Who Gets Government SME R&D Subsidy? Application of Gradient Boosting Model (Gradient Boosting 모형을 이용한 중소기업 R&D 지원금 결정요인 분석)

  • Kang, Sung Won;Kang, HeeChan
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.77-109
    • /
    • 2020
  • In this paper, we build a gradient Boosting model to predict government SME R&D subsidy, select features of high importance, and measure the impact of each features to the predicted subsidy using PDP and SHAP value. Unlike previous empirical researches, we focus on the effect of the R&D subsidy distribution pattern to the incentive of the firms participating subsidy competition. We used the firm data constructed by KISTEP linking government R&D subsidy record with financial statements provided by NICE, and applied a Gradient Boosting model to predict R&D subsidy. We found that firms with higher R&D performance and larger R&D investment tend to have higher R&D subsidies, but firms with higher operation profit or total asset turnover rate tend to have lower R&D subsidies. Our results suggest that current government R&D subsidy distribution pattern provides incentive to improve R&D project performance, but not business performance.

Effect of Sea Surface Temperature Gradient Induced by the Previous Typhoon's Cold Wake on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214) (선행 태풍의 해수 냉각에 의한 해수면 온도 경도가 후행 태풍의 진로에 미치는 영향: 볼라벤(1215)과 덴빈(1214))

  • Moon, Mincheol;Choi, Yumi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.635-647
    • /
    • 2016
  • The effects of sea surface temperature (SST) gradient induced by the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). It was observed that Typhoon Bolaven remarkably reduced SST by about $7^{\circ}C$ at Yellow Sea buoy (YSbuoy). Using the WRF experiments for the imposed cold wake over West of Tembin (WT) and over East of Tembin (ET), this study demonstrates that the effects of eastward SST gradient including cold wake over WT is much significant rather than that over ET in relation to unexpected Tembin's eastward deflection. This difference between two experiments is attributed to the fact that cold wake over WT increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ET and WT. Therefore, it implies that the enhanced eastward SST gradient over East Asia results in larger typhoon deflection toward the region of warmer SST according to the location of the cold wake effect. This result can contribute to the improvement of track prediction for typhoons influencing the Korean Peninsula

Adaptive stochastic gradient method under two mixing heterogenous models (두 이종 혼합 모형에서의 수정된 경사 하강법)

  • Moon, Sang Jun;Jeon, Jong-June
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1245-1255
    • /
    • 2017
  • The online learning is a process of obtaining the solution for a given objective function where the data is accumulated in real time or in batch units. The stochastic gradient descent method is one of the most widely used for the online learning. This method is not only easy to implement, but also has good properties of the solution under the assumption that the generating model of data is homogeneous. However, the stochastic gradient method could severely mislead the online-learning when the homogeneity is actually violated. We assume that there are two heterogeneous generating models in the observation, and propose the a new stochastic gradient method that mitigate the problem of the heterogeneous models. We introduce a robust mini-batch optimization method using statistical tests and investigate the convergence radius of the solution in the proposed method. Moreover, the theoretical results are confirmed by the numerical simulations.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

Predicting of the Severity of Car Traffic Accidents on a Highway Using Light Gradient Boosting Model (LightGBM 알고리즘을 활용한 고속도로 교통사고심각도 예측모델 구축)

  • Lee, Hyun-Mi;Jeon, Gyo-Seok;Jang, Jeong-Ah
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1123-1130
    • /
    • 2020
  • This study aims to classify the severity in car crashes using five classification learning models. The dataset used in this study contains 21,013 vehicle crashes, obtained from Korea Expressway Corporation, between the year of 2015-2017 and the LightGBM(Light Gradient Boosting Model) performed well with the highest accuracy. LightGBM, the number of involved vehicles, type of accident, incident location, incident lane type, types of accidents, types of vehicles involved in accidents were shown as priority factors. Based on the results of this model, the establishment of a management strategy for response of highway traffic accident should be presented through a consistent prediction process of accident severity level. This study identifies applicability of Machine Learning Models for Predicting of the Severity of Car Traffic Accidents on a Highway and suggests that various machine learning techniques based on big data that can be used in the future.

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard;Ondiaka, Mary Nelima;Maina, Duncan;Jonah, Kiptanui Arap Too;Kamran, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation (타원방정식에 의한 벽면 부근의 난류열유속 모형화)

  • Shin, Jong-Keun;An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.