본 논문에서는 1m 공간해상도를 가지는 도시 지역의 위성영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트(gradient)의 히스토그램을 이용하여 스테레오 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 한 화소 거리의 대각 방향에 놓여진 4 개 화소들의 수직 및 수평 방향에 존재하는 화소간의 밝기값 차로 정의되는 그레디언트를 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 평탄화 지수 영상에서 에지 등과 같이 주변 화소의 밝기값과 차이가 큰 화소는 상대적으로 높은 평탄화 지수를,비에지 화소의 경우에는 낮은 평탄화 지수를 가지게 된다. 에지와 비에지를 판정하는 평탄화 임계값을 결정하기 위해 평탄화 지수 영상의 히스토그램 분포를 이용한다. 결정된 평탄화 임계값보다 작은 평탄화 지수를 가지는 정합 창틀 내의 화소들이 일정 비율보다 크면 비에지 화소로 판정하고 정합 창틀을 한 단계 더 크게 설정하는 방법으로 정합 창틀의 크기를 각 화소마다 가변적으로 변화시킨다. 제안한 방법을 IKONOS 스테레오 위성영상에 적용하여 고정 크기의 정합 창툴에 비해 정합 성능이 향상되는 것을 보였다.
본 논문에서는 선 드로링 도면 간의 유사도 정도를 비교하여 도면으로 표현된 3차원 물체의 유사도 측정 알고리즘을 제안한다. 앞면, 뒷면, 좌측면, 우측면, 윗면, 아래면의 선 드로잉 영상으로 표현된 총 여섯 개의 영상을 한 물체의 대표 영상으로 이용한다. 데이터베이스의 3차원 물체 영상들은 전처리를 거친 후 각 영상의 여덟 방향의 그래디언트(gradient) 히스토그램을 측정하고 각 영상을 히스토그램의 기술자 벡터로서 표현하여 저장한다. 입력 영상 역시 같은 방식으로 기술자 벡터를 구하고 이를 비교될 영상의 기술자와 비교하여 유사도를 측정한다. 이와 같은 방식으로 가장 유사한 영상 집합을 가지는 N개의 물체를 탐색하여 시각적으로 제시한다.
본 논문에서는 기울기 크기 기반의 3차원 영역확장 알고리즘을 사용하여 small animal PET(Positron Emission Tomography) 영상으로부터 종양을 분할하는 연구를 수행하였다. 픽셀 값의 범위가 다양하고 저해상도의 특성을 갖는 PET영상으로부터 대상영역을 정확하게 분할하기 위해서 전처리(preprocessing)과정으로 영상 픽셀값의 분포를 펼쳐줌으로써 영상의 가시화를 높이는 히스토그램 스트레칭(histogram stretching) 기법을 적용하고 대상영역과 픽셀값이 유사한 인접영역과의 경계를 찾기 위해 가우시안의 1차 미분 함수를 사용하여 계산된 기울기 크기(gradient magnitude) 기반의 3차원 영역확장(region growing) 알고리즘을 제안한다. 제안한 알고리즘은 영역확장의 결과에 가장 큰 영향을 미치는 적절한 동질성 기준의 선택으로 대상영역의 분할을 성공적으로 수행하여 일반적인 영역확장의 단점을 보완하였다.
본 논문은 교육용 서비스로 이용 가능한 카드 인식 시스템을 제안한다. 사용자는 자유자재로 카드 등록 및 삭제가 가능하며 카드의 회전 및 크기 변화에도 강건한 인식을 보인다. 본 논문에서는 카드 템플릿의 형태 정보와 Histogram of Oriented Gradients를 특징점으로 이용한다. 또한 최종 분류기에서 계층적인 구조를 적용하여 보다 정확한 카드 검출 및 인식을 제안한다.
This paper presents a new variational framework for detecting and tracking moving objects in image sequence. Motion detection is performed using Level Set Model. The original frame is used to provide th moving object boundaries Then, the detection and the tracking problem are addressed in a common framework that employs a inward-outward curve evolution function. This function is minimized using a gradient decent method.
본 논문에서는 히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘을 제안한다. 제안된 차량용 영상보정 알고리즘은 움직임 추정 및 움직임 보상을 통해 차량용 영상의 흔들림을 제거하였다. 그리고 영상을 보정하기 위해 영상을 일정 영역으로 분할하여 각각의 서브 영상에서 픽셀 값의 히스토그램을 계산하였다. 또한, 기울기를 조절하여 영상을 개선하였다. 제안된 알고리즘은 IP에 적용하여 성능 및 시간, 영상의 차이점을 평가하고, 차량용 카메라 영상의 흔들림 제거와 영상 개선을 확인하였다. 본 논문에서 제안된 차량용 영상 보정 알고리즘은 기존 차량 영상 안정화 기술과 비교하였을 때, 차량용 영상에 대한 흔들림 제거는 메모리를 사용하지 않고 실시간 처리를 했기 때문에 효율성을 입증하였다. 그리고 블록 정합을 통한 연산으로 계산 시간 감소 효과를 얻었고, 노이즈가 가장 적고 영상의 자연스러움이 더 뛰어난 복원 결과를 얻을 수 있었다.
In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.
본 논문은 소아 및 성인의 중이염을 자동 판별할 수 있는 알고리즘을 제안한다. 제안 방법은 중이염 영상과 정상 영상 데이터베이스에서 HoG(histogram of oriented gradient) 기술자를 사용하여 특징을 추출한 다음 SVM(support vector machine) 분류기를 통하여 추출된 특징들을 학습시킨다. 여기서 SVM 입력 벡터의 추출을 위하여 입력영상은 영상크기를 사전에 정의된 일정크기의 영상으로 변환되고 변환된 영상을 16개의 블록과 4개의 셀로 분할하며 9개의 빈을 가진 HoG를 사용한다. 결과적으로 입력 영상에서 576개의 특징을 추출하고 이를 SVM의 학습과 분류에 사용된다. 입력 영상이 학습된 특징들의 모델을 기반으로 SVM 분류기를 통하여 중이염 여부가 판별된다. 실험 결과 제안한 방법은 정확도 90% 이상의 판별 성능을 나타내었다.
환경의 변화에 따라 급속도로 변화하는 생태계에 대한 체계적인 연구를 위해 식물의 정보를 수집 분석하기 위한 연구가 활발하게 진행되고 있다. 특히, 스마트 기기의 카메라를 이용하여 언제 어디서나 사용자가 원하는 식물의 종류를 검색할 수 있는 기술에 대한 관심이 증가하고 있다. 본 논문은 식물 인식 및 생태계 분석을 위해 다양한 식물의 잎을 종류별로 분석할 수 있는 방법에 대해 제안한다. 이를 위해, 카메라부터 입력된 식물 잎 사진의 관심 영역을 GrabCut을 통해 배경과 분리한 후, 형태 기술자 추출 방법인 SIFT(Scale-Invariant Feature Transform), HOG(Histogram of Oriented Gradient)를 이용하여 형태 기술자를 추출하고, 이것을 부호화 기법 및 공간 피라미드 방법을 이용한 분류 특징 벡터를 만든다. SVM(Support Vector Machine)을 통한 식물 잎 분류 및 인식한다. 다양한 식물 잎에 대한 실험 결과를 통해 비슷한 색상이나 형태를 가지고 있더라도 방향성 특징 기술자를 활용한 식물 잎 분류 방법이 매우 효율적임을 알 수 있다.
최근 발생빈도가 높은 차량 간 충돌사고를 미연에 방지하고 운전자의 편의를 증진하기 위한 전방 충돌 경고 시스템에 관한 연구가 활발히 진행되고 있다. 충돌 회피를 위한 차량 시스템에 자동으로 차량을 검출하는 기술은 필수적 요소이다. 기존의 학습 기반 차량 검출 방법들은 일반적으로 차량의 후면 전체를 학습하며, 외형이 다른 승용차와 트럭, SUV의 경우 클래스를 분류하여 학습해야 한다는 단점이 있다. 본 논문에서는 이러한 단점을 해결하기 위해 차종에 관계없이 후미등 하단 부의 외형은 유사하다는 점에 착안하여 하단부에 한해 Haar-like feature를 학습함으로써 전방 차량을 검출하는 방법을 제안하였다. 또한 검증단계로서 후미등 검출을 통해 실제 차량과 차량이 아닌 것들을 분류하고 후미등 검출이 어려운 작은 크기의 후보 영역은 HOG(Histogram Of Gradient) 특징과 SVM(Support Vector Machine) 분류기를 통해 검증하여 오검출률을 낮추었다. 도로 주변에 건물이 많은 복잡한 영상에서도 차종에 관계없이 95%에 해당하는 정확도를 보여 전방 차량 검출 성능이 개선된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.