Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Kim, Dong-Wook;Lim, Dong-Hoon
The Korean Journal of Applied Statistics
/
v.24
no.2
/
pp.359-371
/
2011
Edge detection in images is an important step in image segmentation and object recognition as preprocessing for image processing. This paper presents a new edge detection using local histogram analysis based on wavelet transform. In this work, the wavelet transform uses three components (horizontal, vertical and diagonal) to find the magnitude of the gradient vector, instead of the conventional approach in which tw components are used. We compare the magnitude of the gradient vector with the threshold that is obtained from a local histogram analysis to conclude that an edge is present or not. Some experimental results for our edge detector with a Sobel, Canny, Scale Multiplication, and Mallat edge detectors on sample images are given and the performances of these edge detectors are compared in terms of quantitative and qualitative measures. Our detector performs better than the other wavelet-based detectors such as Scale Multiplication and Mallat detectors. Our edge detector also preserves a good performance even if the Sobel and Canny detector are sharply low when the images are highly corrupted.
본 논문에서는 1m 공간해상도를 가지는 도시 지역의 위성영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트(gradient)의 히스토그램을 이용하여 스테레오 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 한 화소 거리의 대각 방향에 놓여진 4 개 화소들의 수직 및 수평 방향에 존재하는 화소간의 밝기값 차로 정의되는 그레디언트를 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 평탄화 지수 영상에서 에지 등과 같이 주변 화소의 밝기값과 차이가 큰 화소는 상대적으로 높은 평탄화 지수를,비에지 화소의 경우에는 낮은 평탄화 지수를 가지게 된다. 에지와 비에지를 판정하는 평탄화 임계값을 결정하기 위해 평탄화 지수 영상의 히스토그램 분포를 이용한다. 결정된 평탄화 임계값보다 작은 평탄화 지수를 가지는 정합 창틀 내의 화소들이 일정 비율보다 크면 비에지 화소로 판정하고 정합 창틀을 한 단계 더 크게 설정하는 방법으로 정합 창틀의 크기를 각 화소마다 가변적으로 변화시킨다. 제안한 방법을 IKONOS 스테레오 위성영상에 적용하여 고정 크기의 정합 창툴에 비해 정합 성능이 향상되는 것을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.10-12
/
2016
본 논문에서는 선 드로링 도면 간의 유사도 정도를 비교하여 도면으로 표현된 3차원 물체의 유사도 측정 알고리즘을 제안한다. 앞면, 뒷면, 좌측면, 우측면, 윗면, 아래면의 선 드로잉 영상으로 표현된 총 여섯 개의 영상을 한 물체의 대표 영상으로 이용한다. 데이터베이스의 3차원 물체 영상들은 전처리를 거친 후 각 영상의 여덟 방향의 그래디언트(gradient) 히스토그램을 측정하고 각 영상을 히스토그램의 기술자 벡터로서 표현하여 저장한다. 입력 영상 역시 같은 방식으로 기술자 벡터를 구하고 이를 비교될 영상의 기술자와 비교하여 유사도를 측정한다. 이와 같은 방식으로 가장 유사한 영상 집합을 가지는 N개의 물체를 탐색하여 시각적으로 제시한다.
Lee Yu-Bu;Kim Kyeong Min;Cheon Gi-Jeong;Kim Myoung-Hee
Proceedings of the Korean Information Science Society Conference
/
2005.07a
/
pp.703-705
/
2005
본 논문에서는 기울기 크기 기반의 3차원 영역확장 알고리즘을 사용하여 small animal PET(Positron Emission Tomography) 영상으로부터 종양을 분할하는 연구를 수행하였다. 픽셀 값의 범위가 다양하고 저해상도의 특성을 갖는 PET영상으로부터 대상영역을 정확하게 분할하기 위해서 전처리(preprocessing)과정으로 영상 픽셀값의 분포를 펼쳐줌으로써 영상의 가시화를 높이는 히스토그램 스트레칭(histogram stretching) 기법을 적용하고 대상영역과 픽셀값이 유사한 인접영역과의 경계를 찾기 위해 가우시안의 1차 미분 함수를 사용하여 계산된 기울기 크기(gradient magnitude) 기반의 3차원 영역확장(region growing) 알고리즘을 제안한다. 제안한 알고리즘은 영역확장의 결과에 가장 큰 영향을 미치는 적절한 동질성 기준의 선택으로 대상영역의 분할을 성공적으로 수행하여 일반적인 영역확장의 단점을 보완하였다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.489-491
/
2012
본 논문은 교육용 서비스로 이용 가능한 카드 인식 시스템을 제안한다. 사용자는 자유자재로 카드 등록 및 삭제가 가능하며 카드의 회전 및 크기 변화에도 강건한 인식을 보인다. 본 논문에서는 카드 템플릿의 형태 정보와 Histogram of Oriented Gradients를 특징점으로 이용한다. 또한 최종 분류기에서 계층적인 구조를 적용하여 보다 정확한 카드 검출 및 인식을 제안한다.
This paper presents a new variational framework for detecting and tracking moving objects in image sequence. Motion detection is performed using Level Set Model. The original frame is used to provide th moving object boundaries Then, the detection and the tracking problem are addressed in a common framework that employs a inward-outward curve evolution function. This function is minimized using a gradient decent method.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.3
/
pp.2192-2200
/
2015
In this paper, we propose an efficient vehicle image compensation algorithm based on Histogram Equalization. The proposed a vehicle image compensation algorithm was elimination to the vehicle image shake using motion compensation and motion estimation. And, algorithm was calculated the histogram of pixel values from each sub-image by dividing the image as the constant size areas in order to image enhancement. Also, it had enhancement to the image by adjusting the gradient. The proposed algorithm was evaluate the difference between of performance and time, image by applied to the IP, and were confirmed the image enhancement with removing of vehicle camera image shake. In this paper, the proposed vehicle image enhancement algorithm was demonstrated effectiveness when compared to existing vehicle image stabilization, because the elimination of shake for the vehicle images used real-time processing without using a memory. And it was obtained the reduction effect of the computation time by the calculated through block matching, and obtained the better restoration result for naturalness of the image with the lowest noise.
Journal of the Korea Institute of Military Science and Technology
/
v.20
no.1
/
pp.33-39
/
2017
In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.3
/
pp.621-629
/
2016
This paper presents a decision method of middle ear disease which is developed in children and adults. In the proposed method, features are extracted from the middle ear disease images and normal images using HoG (histogram of oriented gradient) descriptor and the extracted features are learned by SVM (support vector machine) classifier. To obtain an input vector into SVM, an input image is resized to a predefined size and then the resized image is partitioned into 16 blocks each of which is partitioned into 4 sub-blocks (namely cell). Finally, the feature vector with 576 components is given by using HoG with 9 bins and it is used as SVM learning and classification. Input images are classified by SVM classifier based on the model of learning features. Experimental results show that the proposed method yields the precision of over 90% in decision.
According to fast change of the environment, the structured study of the ecosystem by analyzing the plant leaves are needed. Expecially, the methodology that searches and classifies the leaves from captured from the smart device have received numerous concerns in the field of computer science and ecology. In this paper, we propose a plant leaf classification technique using shape descriptor by combining Scale Invarinat Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) from the image segmented from the background via Graphcut algorithm. The shape descriptor is coded in the field of Locality-constrained Linear Coding to optimize the meaningful features from a high degree of freedom. It is connected to Support Vector Machines (SVM) for efficient classification. The experimental results show that our proposed approach is very efficient to classify the leaves which have similar color, and shape.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.