• Title/Summary/Keyword: Gradient echo pulse sequence

Search Result 34, Processing Time 0.026 seconds

A STUDY ON MAGNETIC RESONANCE IMAGING OF THE TEMPOROMANDIBULAR JOINT (악관절에 대한 자기 공명 영상의 연구)

  • Kim Hyung Sik;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.2
    • /
    • pp.187-198
    • /
    • 1990
  • Examinations of the temporomandibular joints were performed on a 1.5 Tesla magnetic resonance (MR) system. An MR surface receiver coil 3 inch in diameter was placed on plastic frame, the patient's head being placed in the frame so that the coil was pressed against the temporal region. In taking advantage of the magnetic resonance imaging that has been studied briskly till now, author obtained the images of parasagittal and paracoronal planes about the temporomandibular joint by using MPGR (Multi-Planar Gradient Recalled), GRASS (Gradient Recalled Acquisition in the Steady State), and CSMEMP (Contiguous Slice Multiple Echo, Multi-Planar), that differ from the Spin Echo pulse sequence which the previous authors used. Five subjects with no symptoms of temporomandibular joint pain and dysfunction were studied. The plane images obtained by these methods were compared with those by Spin Echo pulse sequence. The results were as follows: 1. The optimal repetition times (TR) and echo times (TE) for T.M.J. image were; a. 400 msec and 18 msec in PMGR pulse sequence. b. 40 msec and 12 msec in GRASS pulse sequence. c. 700 msec and 30 msec in CSMEMP pulse sequence. d. 500 msec and 20 msec in Spin Echo pulse sequence. 2. When the MPGR pulse sequence was using, T2-weighted image was obtained in very short time. On the image of the paracoronal plane by GRASS pulse sequence, meniscus showed the moderate signal intensity, and the meniscus and its anteromedial, posterolateral attachments were observed definitely with gray color. 4. The signal intensity of Spin Echo pulse sequence was equal to that of CSMEMP pulse sequence, but the image by CSMEMP pulse sequence showed relatively lower level in its resolution.

  • PDF

Gradient Optimized Gradient-Echo Gradient Moment Nulling Sequences for Flow Compensation of Brain Images

  • Jahng, Geon-Ho;Stephen Pickup
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • Gradient moment nulling techniques require the introduction of an additional gradient on each axis for each order of motion correction to be applied. The additional gradients introduce new constraints on the sequence design and increase the demands on the gradient system. The purpose of this paper is to demonstrate techniques for optimization of gradient echo gradient moment nulling sequences within the constraints of the gradient hardware. Flow compensated pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. The design of the gradient moment nulling sequences requires the solution of a linear system of equations. A Mathematica package was developed that interactively solves the gradient moment nulling problem. The package allows the physicist to specify the desired order of motion compensation and the duration of the gradients in the sequence with different gradient envelopes. The gradient echo sequences with first, second, and third order motion compensation were implemented with minimum echo time. The sequences were optimized to take full advantage of the capabilities of the gradient hardware. The sequences were used to generate images of phantoms and human brains. The optimized sequences were found to have better motion compensation than comparable standard sequences.

  • PDF

Analysis of Inflow and Susceptibility Effects in fMRI Obtained by CGE and TRFGE Techniques (CGE와 TRFGE 기법으로 얻은 뇌기능 영상에서 혈류효과와 자화율 효과의 해석)

  • No, Yong-Man;Jeong, Sun-Cheol;Jo, Jang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.431-438
    • /
    • 1995
  • Functional imaging based on the susceptibility only is achieved by separation of the susceptibility effect from the mixture of flow effect by use of a tailored RF pulse in conjunction with gradient echo sequence. Using the tailored RF pulse the susceptibility enhanced functional imaging appears to be explicitly related to the deoxygenation processes, while in the conventional gradient echo technique functional contrast on $T2^{*}$ effect images appear to be mixed with a significant fraction of blood flow (in- flow) signals of both arterial as well as venous bloods due to the nature of the fast sequence employed with the gradient echo technique. In this paper, using the tailored RF pulses, one can unambiguously separate the susceptibility and flow effects in functional imaging. Since the signal obtained can be made sufficiently high and represents oxygenation process more accurately, it seems possible to study quantitative oxygen metabolisms in brain function hitherto difficult to do with other gradient echo techniques.

  • PDF

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

Effects of the mascara and eye shadow on theMR image distortion (자기공명영상 왜곡에서 마스카라와 아이섀도의 영향)

  • Lee, Hyun-Yong;Shin, Oun-Jae;Park, Byung-Rae
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Purpose : To evaluate the degree of the artifact which is caused by the mascara and the eye shadow when acquiring MR images and compare the difference of the image distortion according to the change of various pulse sequence. Material and Method : The popular domestic mascara and eye shadow products were selected from three different companies respectively and divided into two groups mascara (M1, M2, M3 ), eye shadow (E1, E2, E3). Self-designed quadrature type saddle coil which has 4 cm inside diameter, 8 cm length and which is for both Tx and Rx was used. MR image was acquired respectively after applying the mascara to the tape from study 1, the eye shadow to the tape from study 2 and adding the eye shadow to the mascara from study 3. The FSE(fast spin echo), the SE(spin echo), the GE(gradient echo) were used as pulse sequences. The degree of the image distortion which was measured from each sequence was analyzed in quality and quantity. Result : The mascara and the eye shadow caused the artifacts to the MR images partially and induced the image distortion. There was a little difference in terms of the degree of artifact according to the change of pulse sequence. From the study 3 in which the eye shadow was applied to the mascara, on the axial plane image, the width of artifact was 16.73 mm in the GE pulse sequence, 6.64 mm in the SE pulse sequence, and 6.19 mm in the FSE pulse sequence. The degree of the artifact appeared highly in order of the GE, the SE and the FSE. On the sagittal plane image, the length of artifact was 22.84 mm in the GE, 17.81 mm in the SE and it appeared highly with the SE and the FSE technique order. Conclusion : When examining the eyeball and the brain of a woman with the mascara and the eye shadow, we have to consider that the artifact caused by them can have an effect on the image diagnosis. We concluded that it is more suitable for a brain and a eyeball T2 emphasizing image to use the FSE technique than the GE technique.

  • PDF

Flow Effects on Tailored RF Gradient Echo (TRFGE) Magnetic Resonance Imaging : In-flow and In-Plane Flow Effect (Tailored RF 경자사계방향 (TRFGE} 자기공명영상(MRI)에서 유체에 의한 영상신호 변화 : 유체유입효과와 영상면내를 흐르는 유체의 효과에 대하여)

  • Mun, Chi-Ung;Kim, Sang-Tae;No, Yong-Man;Im, Tae-Hwan;Jo, Jang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1997
  • In this paper, we have reported two interesting flow effects arising in the TRFGE sequence using water flow phantom. First, we have shown that the TRFGE sequence is indeed not affected by "in-flow" effect from the unsaturated spins flowing into the imaging slice. Second, the enhancement of "in-plane flow" signal in the readout gradient direction was observed when the TRFGE sequence was used without flow compensation. These two results have many interesting applications in MR imaging other than fMRI. Results obtained were also compared with the results obtained by the conventional gradient echo(CGE) imaging. Experiments were performed at 4.7T MRI/S animal system (Biospec, BRUKER, Switzerland). A cylindrical phantom was made using acryl and a vinyl tube was inserted at the center(Fig. 1). The whole cylinder was filled with water doped with $MnCl_2$ and the center tube was filled with saline which flows in parallel to the main magnetic field along the tube. Tailored RF pulse was designed to have quadratic ($z^2$) phase distribution in slice direction(z). Imaging parameters were TR/TE = 55~85/10msec, flip angle = $30^{\circ}$, slice thickness = 2mm, matrix size = 256${\times}$256, and FOV= 10cm. In-flow effect : Axial images were obtained with and without flow using the CGE and TRFGE sequences, respectively. The flow direction was perpendicular to the image slice. In-plane flow : Sagittal images were obtained with and without flow using the TRGE sequence. The readout gradient was applied in parallel to the flow direction. We have observed that the "in-flow" effect did not affect the TRFGE image, while "in-plane flow" running along the readout gradient direction enhanced the signal in the TRFGE sequence when flow compensation gradient scheme was not used.

  • PDF

Magnetic field Inhomogeneity measurement algorithm using magnetic resonance (자기 공명 영상을 이용한 불균일 자계 측정 알고리즘)

  • Kim, H.J.;Kim, C.Y.;Han, S.Y.;Yoon, J.H.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2809-2811
    • /
    • 1999
  • In this paper, we develope an algorithm to calculate field inhomogeneity in MR imaging using a dual fast spin echo pulse sequence. Because phase modulation time can be easily modified with this pulse sequence, high resolution image can be obtained and acquisition time can be reduced compared to gradient echo technique. In the case of phase wrapping in field map, phase corrected using image processing technique. We assume the field pattern to be second order polynomial and apply Pseudo-Inverse equation to calculate second order polynomial coefficients. These coefficients can be used for the shimming of the magnetic field.

  • PDF

Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result (일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과)

  • Jahng, Geon-Ho;Pickup, Stephen
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

  • PDF

Novel Flow Suppression Technique in MRI (핵자기 공명 영상에서 새로운 유속 흐름제거 방법)

  • Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.92-97
    • /
    • 1992
  • The pulsatile nature of blood flow makes artefacts in 2D Fourier transform image. Spatial presaturation is known to be effective in eliminating flow artefacts when the spin echo acquisition is employed. However. this method requires additional RF pulse and spoiling gradient for presaturation. In this paper a new flow saturation technique which does not require additional saturation-RF and gradient is proposed. The proposed technique is equivalent to the existing saturation technique but the elimination of the flow component is achieved by a pair of tailored $90^{\circ}-180^{\circ}$ RF pulses in tile spin echo sequence. By use of two tailored RF pulses with opposite phase polarity, a linear phase gradient is generated for those moving materials and consequently all the spins of moving materials become dephased thereby no signal is observable. Computer simulations and experimental results obtained using both a phantom and a human volunteer with a 2.0 T whole body system are also presented.

  • PDF

Focal Lesion Detection of SPIO-specific agent Compared with Optimized Pulse Sequences in the Hepatic Metastases: Case Review (간 전이환자에서 최적의 펄스시퀀스에 따른 SPIO 특이성 조영제의 국소병변검출: Case review)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.57-61
    • /
    • 2012
  • To compare the accuracy of breath-hold magnetic resonance imaging sequences to establish the most effective superparamagnetic iron oxide-enhanced sequence for detection of hepatic metastases. A total of 100 patients(50men and 50women, mean age: 60years) with liver disease(including malignant and benign liver lesions) were investigated at 3.0T machine (GE, General Electric Medical System, Excite HD) with 8Ch body coil. Pulse sequence for MR imaging decided to the FS-T2-FSE-RT(TR/TE/Thick./Freq./Phase=12857ms/100ms/7mm/512/384), MGRE(TR/TE/Thick./Freq./Phase=100ms/9.7ms/7mm/384/288), in-out of phase echo(TR/$TE_1$, $TE_2$/Thick./Freq./Phase=140ms/2.4, 5.8ms/7mm/352/300), Images obtained before the injection of SPIO. Six sequences were optimized for lesion detection: FS-T2-FSE-RT, multigradient recalled echo data image(MGRE), T2-weighted MGRE with an 9.7msec echo time. Images were reviewed independently by five blinded observers. The accuracy of each sequence was measured by using picture archiving communication system analysis. All results were correlated with findings at multidectator computed tomography examination. Differences between the mean results of the six observers were measured by using paired student t-test analysis. Postcontrast T2-weighted MGRE sequences were the most accurate and were significantly superior to postcontrast FS-T2-FSE-RT, T2-weighted MGRE, in-out of phase MR sequences(p < .05). For all lesions that were malignant or smaller than 1 cm, respectively, contrast to noise ratio of pre and postcontrast sequences were -1and -0.3 for T2-weighted FSE, 0.53 and 4.5 in-out of phase, 7, 7.08, 5.08, 3.32, 1.7, 1.16, 0.79, 0.68 for GRE with 2.9, 7.5, 12.1, 16.6, 21.2, 25.8, 30.4, 35.0 TE values. Breath-hold various TE precontrast sequences offer improvement in sensitivity compared with fixed multigradient recalled echo sequences alone.

  • PDF