• Title/Summary/Keyword: Gradient descent

Search Result 339, Processing Time 0.026 seconds

Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities (궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법)

  • Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

Neuro-Fuzzy Controller Design for Level Controls

  • Intajag, S.;Tipsuwanporn, V.;Koetsam-ang, N.;Witheephanich, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.546-551
    • /
    • 2004
  • In this paper, a level controller is designed with the neuro-fuzzy model based on Takagi-Sugeno fuzzy system. The fuzzy system is employed as the controller, which can be tuned by the neural network mechanism based on a gradient descent technique. The tuning mechanism will provide an optimal process input by forcing the process error to zero. The proposed controller provides the online tunable mode to adjust the consequent membership function parameters. The controller is implemented with M-file and graphic user interface (GUI) of Matlab program. The program uses MPIBM3 interface card to connect with the industrial processes In the experimentation, the proposed method is tested to vary of the process parameters, set points and load disturbance. Processes of one tank and two tanks are used to evaluate the efficiency of our controller. The results of the both processes are compared with two PID systems that are 3G25A-PIDO1-E and E5AK of OMRON. From the comparison results, our controller performance can be archived in the case of more robustness than the two PID systems.

  • PDF

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

Pattern Recognition using Robust Feedforward Neural Networks (로버스트 다층전방향 신경망을 이용한 패턴인식)

  • Hwang, Chang-Ha;Kim, Sang-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.345-355
    • /
    • 1998
  • The back propagation(BP) algorithm allows multilayer feedforward neural networks to learn input-output mappings from training samples. It iteratively adjusts the network parameters(weights) to minimize the sum of squared approximation errors using a gradient descent technique. However, the mapping acquired through the BP algorithm may be corrupt when errorneous training data are employed. In this paper two types of robust backpropagation algorithms are discussed both from a theoretical point of view and in the case studies of nonlinear regression function estimation and handwritten Korean character recognition. For future research we suggest Bayesian learning approach to neural networks and compare it with two robust backpropagation algorithms.

  • PDF

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee, Jung-Hoon;Chung, Young-Seek
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.169-174
    • /
    • 2005
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm we will show the numerical examples for the two-dimensional $TM^2$ cases.

  • PDF

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF

Fault Detection Algorithm of Photovoltaic Power Systems using Stochastic Decision Making Approach (확률론적 의사결정기법을 이용한 태양광 발전 시스템의 고장검출 알고리즘)

  • Cho, Hyun-Cheol;Lee, Kwan-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.212-216
    • /
    • 2011
  • Fault detection technique for photovoltaic power systems is significant to dramatically reduce economic damage in industrial fields. This paper presents a novel fault detection approach using Fourier neural networks and stochastic decision making strategy for photovoltaic systems. We achieve neural modeling to represent its nonlinear dynamic behaviors through a gradient descent based learning algorithm. Next, a general likelihood ratio test (GLRT) is derived for constructing a decision malling mechanism in stochastic fault detection. A testbed of photovoltaic power systems is established to conduct real-time experiments in which the DC power line communication (DPLC) technique is employed to transfer data sets measured from the photovoltaic panels to PC systems. We demonstrate our proposed fault detection methodology is reliable and practicable over this real-time experiment.