• 제목/요약/키워드: Gradient boosting

검색결과 240건 처리시간 0.027초

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost

  • Thongsuwan, Setthanun;Jaiyen, Saichon;Padcharoen, Anantachai;Agarwal, Praveen
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.522-531
    • /
    • 2021
  • We describe a new deep learning model - Convolutional eXtreme Gradient Boosting (ConvXGB) for classification problems based on convolutional neural nets and Chen et al.'s XGBoost. As well as image data, ConvXGB also supports the general classification problems, with a data preprocessing module. ConvXGB consists of several stacked convolutional layers to learn the features of the input and is able to learn features automatically, followed by XGBoost in the last layer for predicting the class labels. The ConvXGB model is simplified by reducing the number of parameters under appropriate conditions, since it is not necessary re-adjust the weight values in a back propagation cycle. Experiments on several data sets from UCL Repository, including images and general data sets, showed that our model handled the classification problems, for all the tested data sets, slightly better than CNN and XGBoost alone and was sometimes significantly better.

머신러닝을 활용한 사회 · 경제지표 기반 산재 사고사망률 상대비교 방법론 (Socio-economic Indicators Based Relative Comparison Methodology of National Occupational Accident Fatality Rates Using Machine Learning)

  • 김경훈;이수동
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.41-47
    • /
    • 2022
  • A reliable prediction model of national occupational accident fatality rate can be used to evaluate level of safety and health protection for workers in a country. Moreover, the socio-economic aspects of occupational accidents can be identified through interpretation of a well-organized prediction model. In this paper, we propose a machine learning based relative comparison methods to predict and interpret a national occupational accident fatality rate based on socio-economic indicators. First, we collected 29 years of the relevant data from 11 developed countries. Second, we applied 4 types of machine learning regression models and evaluate their performance. Third, we interpret the contribution of each input variable using Shapley Additive Explanations(SHAP). As a result, Gradient Boosting Regressor showed the best predictive performance. We found that different patterns exist across countries in accordance with different socio-economic variables and occupational accident fatality rate.

Machine Learning-based Prediction of Relative Regional Air Volume Change from Healthy Human Lung CTs

  • Eunchan Kim;YongHyun Lee;Jiwoong Choi;Byungjoon Yoo;Kum Ju Chae;Chang Hyun Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.576-590
    • /
    • 2023
  • Machine learning is widely used in various academic fields, and recently it has been actively applied in the medical research. In the medical field, machine learning is used in a variety of ways, such as speeding up diagnosis, discovering new biomarkers, or discovering latent traits of a disease. In the respiratory field, a relative regional air volume change (RRAVC) map based on quantitative inspiratory and expiratory computed tomography (CT) imaging can be used as a useful functional imaging biomarker for characterizing regional ventilation. In this study, we seek to predict RRAVC using various regular machine learning models such as extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and multi-layer perceptron (MLP). We experimentally show that MLP performs best, followed by XGBoost. We also propose several relative coordinate systems to minimize intersubjective variability. We confirm a significant experimental performance improvement when we apply a subject's relative proportion coordinates over conventional absolute coordinates.

Crop Yield and Crop Production Predictions using Machine Learning

  • Divya Goel;Payal Gulati
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.17-28
    • /
    • 2023
  • Today Agriculture segment is a significant supporter of Indian economy as it represents 18% of India's Gross Domestic Product (GDP) and it gives work to half of the nation's work power. Farming segment are required to satisfy the expanding need of food because of increasing populace. Therefore, to cater the ever-increasing needs of people of nation yield prediction is done at prior. The farmers are also benefited from yield prediction as it will assist the farmers to predict the yield of crop prior to cultivating. There are various parameters that affect the yield of crop like rainfall, temperature, fertilizers, ph level and other atmospheric conditions. Thus, considering these factors the yield of crop is thus hard to predict and becomes a challenging task. Thus, motivated this work as in this work dataset of different states producing different crops in different seasons is prepared; which was further pre-processed and there after machine learning techniques Gradient Boosting Regressor, Random Forest Regressor, Decision Tree Regressor, Ridge Regression, Polynomial Regression, Linear Regression are applied and their results are compared using python programming.

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

강우에 따른 수위 예측을 위한 AI 기반 기법 분석 (Analysis of AI-based techniques for predicting water level according to rainfall)

  • 김진혁;김충수;김초롱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.294-294
    • /
    • 2021
  • 강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.

  • PDF

Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model

  • Seung-Joong Lee;Sung-Oong Choi
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.547-559
    • /
    • 2023
  • We evaluated the applicability of machine learning techniques and the Kuz-Ram model for predicting the mean fragmentation size in open-pit mines. The characteristics of the in-situ rock considered here were uniaxial compressive strength, tensile strength, rock factor, and mean in-situ block size. Seventy field datasets that included these characteristics were collected to predict the mean fragmentation size. Deep neural network, support vector machine, and extreme gradient boosting (XGBoost) models were trained using the data. The performance was evaluated using the root mean squared error (RMSE) and the coefficient of determination (r2). The XGBoost model had the smallest RMSE and the highest r2 value compared with the other models. Additionally, when analyzing the error rate between the measured and predicted values, XGBoost had the lowest error rate. When the Kuz-Ram model was applied, low accuracy was observed owing to the differences in the characteristics of data used for model development. Consequently, the proposed XGBoost model predicted the mean fragmentation size more accurately than other models. If its performance is improved by securing sufficient data in the future, it will be useful for improving the blasting efficiency at the target site.

타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측 (Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning)

  • 천세호;유진영;이성호;이민수;전태성;이태경
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.