• Title/Summary/Keyword: Gradient based method

Search Result 1,193, Processing Time 0.026 seconds

Real-Time Automatic Target Tracking Based on Spatio-Temporal Gradient Method with Generalized Least Square Estimation (일반화 최소자승추정의 시공간경사법에 의한 실시간 자동목표 추적)

  • Jang, Ick-Hoon;Kim, Jong-Dae;Kim, Nam-Chul;Kim, Jae-Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 1989
  • In this paper, a spatio-temporal gradient (STG) method with generalized least square estimation (GLSE) is proposed for the detection of an object motion in an image sequence corrupted by white Gaussian noise. The proposed method is applied to an automatic target tracker using a high speed 16-bit microprocessor in order to track one moving target in real time. Experimental results show that the proposed method has much better performance over the conventional one with least square estimation (LSE).

  • PDF

Local Shape Optimization of Notches in Airframe for Fatigue-Life Extension (피로수명 연장을 위한 항공기 프레임 노치부위 국부형상 최적설계)

  • Won, Jun-Ho;Choi, Joo-Ho;Gang, Jin-Hyuk;An, Da-Wn;Yoon, Gi-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1132-1139
    • /
    • 2008
  • The aim of this study is to apply shape optimization technique for the repair of aging airframe components, which may extend fatigue life substantially. Free-form optimum shapes of a cracked part to be reworked or replaced are investigated with the objective to minimize the peak local stress concentration or fatigue-damage. Iterative non-gradient method, which is based on an analogy with biological growth, is employed by incorporating the robust optimization method to take account of the stochastic nature of the loading conditions. Numerical examples of optimal hole shape in a flat plate are presented to validate the proposed method. The method is then applied to determine the reworked or replacement shape for the repair of a cracked rib in the rear assembly wing body of aircraft.

LATERAL CONTROL OF AUTONOMOUS VEHICLE USING SEVENBERG-MARQUARDT NEURAL NETWORK ALGORITHM

  • Kim, Y.-B.;Lee, K.-B.;Kim, Y.-J.;Ahn, O.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .

Reducing Peak Cooling Demand Using Building Precooling and Modified Linear Rise of Indoor Space Temperature (건물예냉과 실내온도의 선형상승에 의한 피크냉방수요 저감)

  • Lee, Kyoung-Ho;Yang, Seung-Kwon;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.86-96
    • /
    • 2010
  • The paper describes development and evaluation of a simple method for determining gradient of modified linear setpoint variation to reduce peak electrical cooling demand in buildings using building precooling and setpoint adjustment. The method is an approximated approach for minimizing electrical cooling demand during occupied period in buildings and involves modified linear adjustment of cooling setpoint temperature between $26^{\circ}C$ and $28^{\circ}C$. The gradient of linear variation or final time of linear increase is determined based on the cooling load shape in conventional cooling control having a constant setpoint temperature. The potential to reduce peak cooling demand using the simple method was evaluated through building simulation for a calibrated office building model considering four different weather conditions. The simple method showed about 30% and 20% in terms of reducing peak cooling demand and chiller power consumption, respectively, compared to the conventional control.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

IMRT optimization on multiple slice using gradient based algorithm (Gradient based algorithm을 이용한 multiple slice IMRT optimization)

  • Lee, Byung-Yong;Cho, Byung-Chul;Lee, Seok;Jung, Won-Kyun;An, Seung-Do;Choi, Eun-Kyung;Kim, Jong-Hoon;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 1998
  • IMRT optimization method on multiple slice has been developed by using gradient based algorithm. On about 10-30 CT slices including treatment region of a patient, dose optimization has been performed slice by slice to meet the condition that each organ should be exposed below maximum tolerable doses and that the tumor dose within the range of 100$\pm$5 %. Field size was limited to 8$\times$8 cm$^2$ and in this condition, beam divergence was not taken into account to calculate dose distribution. Total dose distribution was calculated by superposing each beamlet whose dose distribution had been precalculated. In order to investigate beam number dependency, dose optimization was performed for one, three, five, seven, and nine coplanar beams and then each optimization index was evaluated. It is found that optimization time was proportional to number of slices to be optimized, and the most efficient plan was obtained from the case of three-to-seven incident beams with respect to calculation time and optimization index. In conclusion, dose optimization of multiple slice was able to be obtained by repeating dose optimization of single slice under condition that the beam size is not too large to ignore beam divergence. And it turns out that result of dose optimization was so sensitive to the position of isocenter that some method to optimize isocenter position is needed to improve it.

  • PDF

Parallel finite element simulation of free surface flows using Taylor-Galerkin/level-set method (Taylor-Galerkin/level-set 방법을 이용한 자유 표면의 병렬 유한 요소 해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Cho, Myung-Hwan;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2558-2561
    • /
    • 2008
  • In the present study, a parallel Taylor-Galerkin/level set based two-phase flow code was developed using finite element discretization and domain decomposition method based on MPI (Message Passing Interface). The proposed method can be utilized for the analysis of a large scale free surface problem in a complex geometry due to the feature of FEM and domain decomposition method. Four-step fractional step method was used for the solution of the incompressible Navier-Stokes equations and Taylor-Galerkin method was adopted for the discretization of hyperbolic type redistancing and advection equations. A Parallel ILU(0) type preconditioner was chosen to accelerate the convergence of a conjugate gradient type iterative solvers. From the present parallel numerical experiments, it has been shown that the proposed method is applicable to the simulation of large scale free surface flows.

  • PDF

An Analysis of Similarity Measures for Area-based Multi-Image Matching (다중영상 영역기반 영상정합을 위한 유사성 측정방법 분석)

  • Noh, Myoung-Jong;Kim, Jung-Sub;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.143-152
    • /
    • 2012
  • It is well-known that image matching is necessary for automatic generation of 3D data such as digital surface data from aerial images. Recently developed aerial digital cameras allow to capture multi-strip images with higher overlaps and less occluded areas than conventional analogue cameras and that much of researches on multi-image matching have been performed, particularly effective methods of measuring a similarity among multi-images using point features as well as linear features. This research aims to investigate similarity measuring methods such as SSD and SNCC incorporated into a area based multi-image matching method based on vertical line locus. In doing this, different similarity measuring entities such as grey value, grey value gradient, and average of grey value and its gradient are implemented and analyzed. Further, both dynamic and pre-fixed adaptive-window size are tested and analyzed in their behaviors in measuring similarity among multi-images. The aerial images used in the experiments were taken by a DMC aerial frame camera in three strips. The over-lap and side-lap are about 80% and 60%, respectively. In the experiment, it was found that the SNCC as similarity measuring method, the average of grey value and its gradient as similarity measuring entity, and dynamic adaptive-window size can be best fit to measuring area-based similarity in area based multi-image matching method based on vertical line locus.

The Signal Characteristics of Reflected Spectra of Fiber Bragg Grating Sensors with Strain Gradient and Grating Lengths (변형률 구배와 격자 길이에 따른 광섬유 브래그 격자 센서의 신호 특성 연구)

  • Kang, Dong-Hoon;Park, Sang-Oh;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • FBG sensors have been studied more actively than any other fiber optic sensor because of good multiplexing capabilities among many fiber optic sensors. The demodulation method of FBG sensors is based on the detection of wavelength shift of their sensor peaks and properties such as strain and temperature can be measured by detecting them. However, the signal stability of FBG sensors can be influenced by the strain gradient induced by structural geometry or cracks on the surface when FBG sensors are embedded into or attached on the structure. In this study, the signal characteristics of reflected spectra of FBG sensors under strain gradient were verified and the relations between the grating length of FBG sensors and the amount of strain gradient were investigated. From the experimental results, the recommended working range of FBG sensors under strain gradients was shown quantitatively with respect to grating lengths of them.

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF