• Title/Summary/Keyword: Gradient Search Method

Search Result 130, Processing Time 0.022 seconds

A LIFE PREDICTION OF LDPE DEGRADATION PROCESSING USING PARAMETERS (파라미터를 이용한 LDPE 절연열화 과정의 수면예측)

  • Kim, Sung-Hong;Seo, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.40-43
    • /
    • 2000
  • Our studies diagnose insulation degradation using the method of computer sensing system, which has the advantages of PD(partial discharge) and AE(acoustic emission) sensing system. To use advantages of these two methods can be used effectively to search for treeing location and PD in some materials. In analysis method of degradation, using statically operator such as the center of gravity (G), the gradient of the discharge distribution(C), we have analyzed for the prediction of life which we can be obtained the time, occurred of many pulse of small discharge amplitude.

  • PDF

Road following of an autonomous vehicle (무인차량의 도로주행 방법)

  • 박범주;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.773-778
    • /
    • 1991
  • In this paper we describe a road following method for an autonomous vehicle. From a road image in gray level, a road boundary is detected using a gradient operator, and then the road boundary is converted to orthogonal view of the road showing the vehicle position and heading direction. In this research an efficient road boundary search technique is developed to support real time vehicle control. Also, an obstacle detection method, using images taken from two different positions, has been developed.

  • PDF

Feasibility Test of the Numerical Optimization for the Fast IMRT Planning

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Dempsey, James F.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.79-82
    • /
    • 2005
  • In this study, we have tested the feasibility of the convex non-linear objective model and the line search optimization method for the fluence map optimization (FMO). We've created the convex nonlinear objective function with simple bound constraints and attained the optimal solution using well-known gradient algorithms with an Armijo line search that requires sufficient objective function decrease. The algorithms were applied to 10 head-and-neck cases. The numbers of beamlets were between 900 and 2,100 with a 3 mm isotropic dose grid. Nonlinear optimization methods could efficiently solve the IMRT FMO problem in well under a minute with high quality for clinical cases.

  • PDF

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

An Adaptive Block Matching Motion Estimation Method Using Optical Flow (광류를 이용한 적응적인 블록 정합 움직임 추정 기법)

  • Kim, Kyoung-Kyoo;Park, Kyung-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In this paper, we present an adaptive block matching motion estimation using optical flow. In the proposed algorithm, we calculate the temporal and spatial gradient value for each pixel value from tile differential filter, and estimate the optical flow which is used to decide the location and the size of the search region from the gradient values by least square optical flow algorithm. In particular, the proposed algorithm showed a excellent performance with fast and complex motion sequences. From the computer simulation for various motion characteristic sequences. The proposed algorithm shows a significant enhancement of PSNR over previous blocking matching algorithms.

  • PDF

Economic Life Assessment of Power Transformer using HS Optimization Algorithm (HS 최적화 알고리즘을 이용한 전력용 변압기의 경제적 수명평가)

  • Lee, Tae-bong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.123-128
    • /
    • 2017
  • Electric utilities has been considered the necessity to introduce AM(asset management) of electric power facilities in order to reduce maintenance cost of existing facilities and to maximize profit. In order to make decisions in terms of repairs and replacements for power transformers, not only measuring by counting parts and labor costs, but comprehensive comparison including reliability and cost is needed. Therefore, this study is modeling input cost for power transformer during its entire life and also the life cycle cost (LCC) technique is applied. In particular, this paper presents an application of heuristic harmony search(HS) optimization algorithm to the convergence and the validity of economic life assessment of power transformer from LCC technique. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the proposed identification method has been demonstrated through an economic life assessment simulation of power transformer using HS optimization algorithm.

Identification of First-order Plus Dead Time Model from Step Response Using HS Algorithm (HS 알고리즘을 이용한 계단응답으로부터 FOPDT 모델 인식)

  • Lee, Tae-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.636-642
    • /
    • 2015
  • This paper presents an application of heuristic harmony search (HS) optimization algorithm for the identification of linear continuous time-delay system from step response. Identification model is first-order plus dead time (FOPDT), which describes a linear monotonic process quite well in most chemical processes and HAVC process and is often sufficient for PID controller tuning. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the identification method has been demonstrated through a number of simulation examples.

Fuzzy Model Identification using a mGA Hybrid Schemes (mGA의 혼합된 구조를 사용한 퍼지 모델 동정)

  • Ju, Yeong-Hun;Lee, Yeon-U;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.423-431
    • /
    • 2000
  • This paper presents a systematic approach to the input-output data-based fuzzy modeling for the complex and uncertain nonlinear systems, in which the conventional mathematical models may fail to give the satisfying results. To do this, we propose a new method that can yield a successful fuzzy model using a mGA hybrid schemes with a fine-tuning method. We also propose a new coding method fo chromosome for applying the mGA to the structure and parameter identifications of fuzzy model simultaneously. During mGA search, multi-purpose fitness function with a penalty process is proposed and adapted to guarantee the accurate and valid fuzzy modes. This coding scheme can effectively represent the zero-order Takagi-Sugeno fuzzy model. The proposed mGA hybrid schemes can coarsely optimize the structure and the parameters of the fuzzy inference system, and then fine tune the identified fuzzy model by using the gradient descent method. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its applications to two nonlinear systems.

  • PDF

Optimum Inverse Design of 2-D Cascade Airfoil (2차원 익렬 익형의 최적역설계)

  • 조장근;박원규
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The present paper describes the optimum inverse design of 2-D linear cascade airfoil. The pressure coefficient of an airfoil surface is taken as the objective function, and non-orthogonal incompressible Navier-Stokes equation is applied to calculate the pressure coefficient. Both of steepest descent and conjugate gradient method have been used to make the objective function go to zero. The 1st order finite differential method is applied to the searching direction and the golden section method is used to compute the searching distance. As a result of the present work, a good convergence to the target airfoil has been obtained.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.