• 제목/요약/키워드: Gradient Magnetic Field

검색결과 214건 처리시간 0.027초

Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field

  • Lim, Jonghwan;Kim, Soohyun;Kim, Da Sol;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.184-189
    • /
    • 2015
  • We report a simple way to enhance the size gradient of an imprinted nanopattern through oxygen plasma etching under a nonuniform magnetic field. A sample substrate was placed next to a magnet, and then a nonuniform magnetic field condition was formed around the sample. Using oxygen plasma etching, a line pattern having an initial width of 273 nm was gradually modified from 248 nm at one end to 182 nm at the other end. Controlling the arrangement of the magnet and sample, we could induce a triangular shape size gradient. We verified that the gradually modified nanopatterns we produced are applicable to continual optical property control, showing a possibility to be utilized for optical components such as gratings and polarizers.

Modeling wave propagation in graphene sheets influenced by magnetic field via a refined trigonometric two-variable plate theory

  • Fardshad, R. Ebrahimi;Mohammadi, Y.;Ebrahimi, F.
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.329-338
    • /
    • 2019
  • In this paper, the magnetic field influence on the wave propagation characteristics of graphene nanosheets is examined within the frame work of a two-variable plate theory. The small-scale effect is taken into consideration based on the nonlocal strain gradient theory. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. A derivation of the differential equation is conducted, employing extended principle of Hamilton and solved my means of analytical solution. A refined trigonometric two-variable plate theory is employed in Kinematic relations. The scattering relation of wave propagation in solid bodies which captures the relation of wave number and the resultant frequency is also investigated. According to the numerical results, it is revealed that the proposed modeling can provide accurate wave dispersion results of the graphene nanosheets as compared to some cases in the literature. It is shown that the wave dispersion characteristics of graphene sheets are influenced by magnetic field, elastic foundation and nonlocal parameters. Numerical results are presented to serve as benchmarks for future analyses of graphene nanosheets.

부분적인 경사자계를 이용한 고속 자기공명 영상촬영기법 (Fast MR Imaging Technique by Using Locally-Linear Gradient Field)

  • 양윤정;이종권
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.93-98
    • /
    • 1996
  • The purpose of this paper is to propose a new localized imaging method of reduced imaging time luting a locally-linear gradient. Since most fast MR(Magnetic Resonance) imaging methods need the whole $\kappa$-space(Spatial frequency space) data corresponding to the whole imaging area, there are limitstions in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging areal Conventional imaging sequences can be used without any RF/gradient pulse sequence modifiestions except the change in the number of encoding steps and the field of view.

  • PDF

ZORA DFT Calculation of $^{11}$B Electric Field Gradient Tensor for Lithium Borates

  • Woo, Ae-Ja;Wasylishen, Roderick E.
    • 한국자기공명학회논문지
    • /
    • 제8권2호
    • /
    • pp.70-76
    • /
    • 2004
  • ZORA-DFT calculations of $^{11}$B EFG (electric field gradient) tensors for lithium borates, LiB$_3O_5$ (LBO) and Li$_2B_4O_7$ (LTB), were performed. The calculated values of 11B quadrupole coupling constant and asymmetry parameter are in good agreement with the experimental values. The sign of the quadrupole coupling constant for the tetrahedral boron site was deduced from the distortion from the ideal tetrahedral symmetry.

  • PDF

Detection of Neuronal Activity by Motion Encoding Gradients: A Snail Ganglia Study

  • Park, Tae-S.;Park, Ji-Ho;Cho, Min-H.;Lee, Soo-Y.
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.24-28
    • /
    • 2007
  • Presuming that firing neurons have motions inside the MRI magnet due to the interaction between the neuronal magnetic field and the main magnetic field, we applied motion encoding gradients to dissected snail ganglia to observe faster responding MRI signal than the BOLD signal. To activate the snail ganglia in synchronization with the MRI pulse sequence, we used electrical stimulation with the frequency of 30 Hz and the pulse width of 2s. To observe the fast responding signal, we used the volume selected MRI sequence. The magnetic resonance signal intensity, measured with 8 ms long motion encoding gradient with a 20mT/m gradient strength, decreased about $3.46{\pm}1.48%$ when the ganglia were activated by the electrical stimulation.

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

회전 경사자계와 사상 재구성을 이용한 무소음 자기 공명 영상법 (Silent Magnetic Resonance Imaging Using Rotating and Projection Reconstruction)

  • 정성택;박세혁;조장희
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.555-558
    • /
    • 1997
  • A new approach to silent MR imaging using a rotating DC gradient has been explored and experimentally studied. As is known, acoustic or sound noise has been one of the major problems in handling patients, mainly due to the fast gradient pulsings in interaction with the main magnetic field. The sound noise is also proportionally louder as the magnetic field strength becomes larger. In this article, we have described a new imaging technique using a mechanically rotating DC gradient coil as an approach toward silent MR imaging, i.e., a mechanically rotated DC gradient effectively replaces both the phase encoding as well as the readout gradient pulsings and data obtained in this manner provides a set of project ion data which later can be used or the projection reconstructionorwithsomeinterpolation techniques one can also perform conventional 2-D FFT (Fast Fourier Transform) image reconstruction. We found, with this new technique, that the sound noise intensity compared with the conventional imaging technique, such as spin echo sequence, is reduced down to -20.7 dB or about 117.5 times. The experimental pulse sequence and its principle are described and images obtained by the new silent MR imaging technique are reported.

  • PDF

자기공명영상촬영을 위한 표면경사자계코일의 저전력 설계 (Low-Power Design of the Surface Gradient Coil for Magnetic Resonance Imaging)

  • 오창현;이종권;이윤;김민기
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.33-35
    • /
    • 1993
  • A new low-power, high-order optimization scheme to design surface gradient coils (SGC) is proposed for magnetic resonance imaging (MRI). Although previous SGCs have been designed and constructed just to get strong linear gradients, this paper proposes more systematic ways of SGC design by minimizing electrical power consumption in the gradient coil and by removing unnecessary high-order field distortions in the imaging region. By assuming continuous current flow on the coil surface which may be or may not be planar, power consumption in the coil is minimized. According to the simulation results, the SGC designed by using the proposed scheme seems to produce much more uniform linear gradient field using less electrical power compared to the previously proposed SGCs.

  • PDF