• 제목/요약/키워드: Gradient Descent Learning

검색결과 153건 처리시간 0.036초

Study of Selection of Regression Equation for Flow-conditions using Machine-learning Method: Focusing on Nakdonggang Waterbody (머신러닝 기법을 활용한 유황별 LOADEST 모형의 적정 회귀식 선정 연구: 낙동강 수계를 중심으로)

  • Kim, Jonggun;Park, Youn Shik;Lee, Seoro;Shin, Yongchul;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제59권4호
    • /
    • pp.97-107
    • /
    • 2017
  • This study is to determine the coefficients of regression equations and to select the optimal regression equation in the LOADEST model after classifying the whole study period into 5 flow conditions for 16 watersheds located in the Nakdonggang waterbody. The optimized coefficients of regression equations were derived using the gradient descent method as a learning method in Tensorflow which is the engine of machine-learning method. In South Korea, the variability of streamflow is relatively high, and rainfall is concentrated in summer that can significantly affect the characteristic analysis of pollutant loads. Thus, unlike the previous application of the LOADEST model (adjusting whole study period), the study period was classified into 5 flow conditions to estimate the optimized coefficients and regression equations in the LOADEST model. As shown in the results, the equation #9 which has 7 coefficients related to flow and seasonal characteristics was selected for each flow condition in the study watersheds. When compared the simulated load (SS) to observed load, the simulation showed a similar pattern to the observation for the high flow condition due to the flow parameters related to precipitation directly. On the other hand, although the simulated load showed a similar pattern to observation in several watersheds, most of study watersheds showed large differences for the low flow conditions. This is because the pollutant load during low flow conditions might be significantly affected by baseflow or point-source pollutant load. Thus, based on the results of this study, it can be found that to estimate the continuous pollutant load properly the regression equations need to be determined with proper coefficients based on various flow conditions in watersheds. Furthermore, the machine-learning method can be useful to estimate the coefficients of regression equations in the LOADEST model.

A Robust Backpropagation Algorithm and It's Application (문자인식을 위한 로버스트 역전파 알고리즘)

  • Oh, Kwang-Sik;Kim, Sang-Min;Lee, Dong-No
    • Journal of the Korean Data and Information Science Society
    • /
    • 제8권2호
    • /
    • pp.163-171
    • /
    • 1997
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Multilayer feedforward neural networks have been proposed as a good approximator of nonlinear function. The back propagation(BP) algorithm allows multilayer feedforward neural networks to learn input-output mappings from training samples. It iteratively adjusts the network parameters(weights) to minimize the sum of squared approximation errors using a gradient descent technique. However, the mapping acquired through the BP algorithm may be corrupt when errorneous training data we employed. When errorneous traning data are employed, the learned mapping can oscillate badly between data points. In this paper we propose a robust BP learning algorithm that is resistant to the errorneous data and is capable of rejecting gross errors during the approximation process, that is stable under small noise perturbation and robust against gross errors.

  • PDF

A Study on Wavelet Neural Network Based Generalized Predictive Control for Path Tracking of Mobile Robots (이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 일반형 예측 제어에 관한 연구)

  • Song, Yong-Tae;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.457-466
    • /
    • 2005
  • In this paper, we propose a wavelet neural network(WNN) based predictive control method for path tracking of mobile robots with multi-input and multi-output. In our control method, we use a WNN as a state predictor which combines the capability of artificial neural networks in learning processes and the capability of wavelet decomposition. A WNN predictor is tuned to minimize errors between the WNN outputs and the states of mobile robot using the gradient descent rule. And control signals, linear velocity and angular velocity, are calculated to minimize the predefined cost function using errors between the reference states and the predicted states. Through a computer simulation for the tracking performance according to varied track, we demonstrate the efficiency and the feasibility of our predictive control system.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제61권5호
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • 제22권12호
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction (기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝)

  • Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • 제10권1호
    • /
    • pp.109-123
    • /
    • 2004
  • Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.

  • PDF

Analysis of Important Indicators of TCB Using GBM (일반화가속모형을 이용한 기술신용평가 주요 지표 분석)

  • Jeon, Woo-Jeong(Michael);Seo, Young-Wook
    • The Journal of Society for e-Business Studies
    • /
    • 제22권4호
    • /
    • pp.159-173
    • /
    • 2017
  • In order to provide technical financial support to small and medium-sized venture companies based on technology, the government implemented the TCB evaluation, which is a kind of technology rating evaluation, from the Kibo and a qualified private TCB. In this paper, we briefly review the current state of TCB evaluation and available indicators related to technology evaluation accumulated in the Korea Credit Information Services (TDB), and then use indicators that have a significant effect on the technology rating score. Multiple regression techniques will be explored. And the relative importance and classification accuracy of the indicators were calculated by applying the key indicators as independent features applied to the generalized boosting model, which is a representative machine learning classifier, as the class influence and the fitness of each model. As a result of the analysis, it was analyzed that the relative importance between the two models was not significantly different. However, GBM model had more weight on the InnoBiz certification, R&D department, patent registration and venture confirmation indicators than regression model.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • 제57권2호
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.

Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques (Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류)

  • Kwon, Hyoung-Seok;Ryu, Kyeongho;Sim, Ickhyeon;Lee, Choon-Ki;Oh, Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • 제23권4호
    • /
    • pp.230-242
    • /
    • 2020
  • We performed a magnetotelluric (MT) survey to delineate the geological structures below the depth of 20 km in the Gyeongju area where an earthquake with a magnitude of 5.8 occurred in September 2016. The measured MT data were severely distorted by electrical noise caused by subways, power lines, factories, houses, and farmlands, and by vehicle noise from passing trains and large trucks. Using machine-learning methods, we classified the MT time series data obtained near the railway and highway into two groups according to the inclusion of traffic noise. We applied three schemes, stochastic gradient descent, support vector machine, and random forest, to the time series data for the highspeed train noise. We formulated three datasets, Hx, Hy, and Hx & Hy, for the time series data of the large truck noise and applied the random forest method to each dataset. To evaluate the effect of removing the traffic noise, we compared the time series data, amplitude spectra, and apparent resistivity curves before and after removing the traffic noise from the time series data. We also examined the frequency range affected by traffic noise and whether artifact noise occurred during the traffic noise removal process as a result of the residual difference.