Browse > Article
http://dx.doi.org/10.7582/GGE.2020.23.4.230

Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques  

Kwon, Hyoung-Seok (Research Research Institute for Earth Resources, Kangwon National University)
Ryu, Kyeongho (Department of Energy and Resources Engineering, Kangwon National University)
Sim, Ickhyeon (AAT Co. Ltd.)
Lee, Choon-Ki (Division of Glacial Environment Research, Korea Polar Research Institute)
Oh, Seokhoon (Department of Energy and Resources Engineering, Kangwon National University)
Publication Information
Geophysics and Geophysical Exploration / v.23, no.4, 2020 , pp. 230-242 More about this Journal
Abstract
We performed a magnetotelluric (MT) survey to delineate the geological structures below the depth of 20 km in the Gyeongju area where an earthquake with a magnitude of 5.8 occurred in September 2016. The measured MT data were severely distorted by electrical noise caused by subways, power lines, factories, houses, and farmlands, and by vehicle noise from passing trains and large trucks. Using machine-learning methods, we classified the MT time series data obtained near the railway and highway into two groups according to the inclusion of traffic noise. We applied three schemes, stochastic gradient descent, support vector machine, and random forest, to the time series data for the highspeed train noise. We formulated three datasets, Hx, Hy, and Hx & Hy, for the time series data of the large truck noise and applied the random forest method to each dataset. To evaluate the effect of removing the traffic noise, we compared the time series data, amplitude spectra, and apparent resistivity curves before and after removing the traffic noise from the time series data. We also examined the frequency range affected by traffic noise and whether artifact noise occurred during the traffic noise removal process as a result of the residual difference.
Keywords
MT time series; traffic noise; high-speed train (HST) noise; truck noise; random forest;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, T. J., Lee, S. K., Lee, C., Park, I. H., Song, Y., and Uchida T., 2008, Two-dimensional magnetotelluric surveys for investigating possible deep geothermal regime in the midmountain area of Jeju island, Geosystem Eng., 45(4), 315-325 (in Korean with English abstract).
2 Lee, T. J., Song, Y., and Uchida T., 2005, Two- and threedimensional interpretations of magnetotelluric data from Pohang geothermal site, J. Korea Inst. Mineral Mining Eng., 42(4), 297-307 (in Korean with English abstract).
3 Li, J., Zhang, X., Gong, J., Tang J., Ren, Z, Li, G., Deng, Y., and Cai, J., 2018, Signal-noise identification of magnetotelluric signals using fractal-entropy and clustering algorithm for targeted de-noising, Fractals, 26(2), 1840011, doi: 10.1142/S0218348X1840011X.   DOI
4 Lorrain, P., and Corson, D. R., 1907, Electromagnetic fields and waves, W.H. Freeman and Company, 319-322.
5 Manoj, C. and Nagarajan, N., 2003, The application of artificial neural networks to magnetotelluric time-series analysis, Geophys. J. Int., 153(2), 409-423, doi: 10.1046/j.1365-246X.2003.01902.x   DOI
6 Markevicius, V., Navikas, D., Daubaras, A. Cepenas, M., Zilys, M., and Andriukaitis, D., 2014, Vehicle influence on the earth's magnetic field changes, Elektronika ir Elektrotechnika, 20(4), 43-48, doi: 10.5755/j01.eee.20.4.4552.   DOI
7 Markevicius, V., Navikas, D., Zilys, M., Andriukaitis, D., Valinevicius, A. and Cepenas, M., 2016, Dynamic vehicle detection via the use of magnetic field sensors, sensors, 16(1), 1-9, doi: 10.3390/s16010078.   DOI
8 Meng, Y., Wang, G., Bai, Y., Zhang, Z., and Wang, W., 2019, High-speed railway interference and remote reference suppression in MT survey, AGUFM, 2019, GP11A-07.
9 Sim, I. H, 2020, Noise reduction in MT time series measured in the vicinity of highway and electric train line using supervised learning and wavelet transform, MS thesis, Kangwon Nat'l University.
10 Uchida, T., Song, Y., Lee, T. J., Mitsuhata, Y. Lim, S. K., and Lee, S. K., 2005, Magnetotelluric survey in an extremely noisy environment at the Pohang low-enthalpy geothermal area, Korea, Proceedings World Geothermal Congress 2005.
11 Varentsov, I. M., Sokolova, E. Y., Martanus, E. R., and Nalivaiko, K. V., 2003, System of electromagnetic field transfer operators for the BEAR array of simultaneous soundings: methods and results, Izv., Phys. Solid Earth, 39(2), 118-148.
12 Wang, Q., Zheng, J, Xu, H., Xu, B., and Chen, R., 2018, Roadside magnetic sensor system for vehicle detection in urban environments, IEEE Trans. Intell. Transp. Syst., 19(5), 1365-1374, doi: 10.1109/TITS.2017.2723908.   DOI
13 Chave, A. D., Thomson, D. J., and Ander M. E., 1987, On the Robust estimation of power spectra, coherences, and transfer functions, J. Geophys. Res. Solid Earth, 92(B1), 633-648, doi:0.1029/JB092iB01p00633.   DOI
14 Carbonari, R., Maio, R. D., Piegari, E., D'Auria, L., Esposito, A., and Petrillo, Z., 2018, Filtering of noisy magnetotelluric signals by SOM neural netoworks, Phys. Earth Planet. Inter., 258, 12-22, doi: 10.1016/j.pepi.2018.10.004.   DOI
15 Chave, A. D. and Jones, A. G., 2012, The magnetotelluric method-Theory and practice, Cambridge Univ. Press, 454-457, doi: 10.1017/CBO9781139020138.
16 Chave, A. D. and Thomson, D. J., 2004, Bounded inluence magnetotelluric response function estimation, Geophys. J. Int., 157(3), 998-1006, doi: 10.1111/j.1365-246X.2004.02203.x.   DOI
17 Daubaras, A., and Zilys, M., 2012, Vehicle detection based on magneto-resistive magnetic field sensor, Elektronika ir Elektrotechnika, 118(2), 27-32, doi: 10.5755/j01.eee.118.2.1169.   DOI
18 Geron, A., 2017, Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly media. Sebastopol, CA, 54-56.
19 Kim, K., and Oh, S., 2013, A geophysical survey of an iron mine site, Jour. Korean Earth Science Society, 34(6), 575-587 (in Korean with English abstract), doi: 10.5467/JKESS.2013.34.6.575.   DOI
20 Han, K., 2012, Geophysical study fors tructural characteristics and changes of Yangsan fault zone in the Eonyang-Gyeongju area, Ph.D. thesis, Andong Nat'l University.
21 Kwon, H. S., Song, Y., Yi, M. J., Chung, H. J., and Kim, K. S., 2006, Case histories of electrical resistivity and controlledsource magnetotelluric surveys for the site investigation of tunnel construction, J. Environ. Eng. Geoph., 11(4), 237-248, doi: 10.2113/JEEG11.4.237.   DOI
22 Lan, J., and Shi, Y., 2009, Vehicle detection and recognition based on a MEMS magnetic sensor, Proceedings of the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 404-408, doi: 10.1109/NEMS.2009.5068605   DOI
23 Lan, J., Xiang, Y., Wang, L., and Shi, Y., 2011, Vehicle detection and classification by measuring and processing magnetic signal, Measurement, 44(1), 174-180, doi: 10.1016/j.measurement.2010.09.044.   DOI
24 Lee, C. K., 2006, Magnetotelluric study on the deep geolelectrical structure across the Korean Peninsula, Ph.D. thesis, Seoul Nat'l University.
25 Lee, T. J., Han, N. R., Ko, K. B., Hwang, S. H., Park, K. G., Kim, H. C., and Park, Y. C., 2009, Site investigation for pilot scale CO2 sequestration by magnetotelluric surveys in Uiseong, Korea, Geophys. and Geophys. Explor., 12(4), 299-308 (in Korean with English abstract).
26 Lee, T. J., Kim, M. S., Park, I. H, Song, Y., Nam, M. J., Song, S. Y., and Yun, K. H., 2019, Geoelectrical structure of Ulleung Island, Korea: interpretation of three-dimensional magnetotelluric data, Explor. Geophy., 50(5), 481-489, doi: 10.1080/08123985.2019.1634192.   DOI