• 제목/요약/키워드: Graded r-ideals

검색결과 15건 처리시간 0.018초

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

m-PRIMARY m-FULL IDEALS

  • Woo, Tae Whan
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.799-809
    • /
    • 2013
  • An ideal I of a local ring (R, m, k) is said to be m-full if there exists an element $x{\in}m$ such that Im : x = I. An ideal I of a local ring R is said to have the Rees property if ${\mu}$(I) > ${\mu}$(J) for any ideal J containing I. We study properties of m-full ideals and we characterize m-primary m-full ideals in terms of the minimal number of generators of the ideals. In particular, for a m-primary ideal I of a 2-dimensional regular local ring (R, m, k), we will show that the following conditions are equivalent. 1. I is m-full 2. I has the Rees property 3. ${\mu}$(I)=o(I)+1 In this paper, let (R, m, k) be a commutative Noetherian local ring with infinite residue field k = R/m.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

ON THE FIRST GENERALIZED HILBERT COEFFICIENT AND DEPTH OF ASSOCIATED GRADED RINGS

  • Mafi, Amir;Naderi, Dler
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.407-417
    • /
    • 2020
  • Let (R, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field. Let I be an ideal of R that has analytic spread ℓ(I) = d, satisfies the Gd condition, the weak Artin-Nagata property AN-d-2 and m is not an associated prime of R/I. In this paper, we show that if j1(I) = λ(I/J) + λ[R/(Jd-1 :RI+(Jd-2 :RI+I):R m)] + 1, then I has almost minimal j-multiplicity, G(I) is Cohen-Macaulay and rJ(I) is at most 2, where J = (x1, , xd) is a general minimal reduction of I and Ji = (x1, , xi). In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for m-primary ideals.