• Title/Summary/Keyword: Governor control

Search Result 151, Processing Time 0.028 seconds

A Study on the Development of Control System for Low-Speed Diesel Engines for Ships (선박용 저속 디젤 엔진을 위한 제어 시스템 개발에 관한 연구)

  • Kim, Tae-Hoon;Lee, Jun-Ho;Um, Duk-Hyung;Jeong, Dong-Chai
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.11-12
    • /
    • 2005
  • BMS & Governor System은 선박용 추진 기관으로 사용되는 저속 디젤 엔진의 원격 운전 및 제어를 담당하는 시스템으로 선박 추진과 엔진 제어에 필수적인 중요 구성 요소이며, 조선 기자재관련 고부가가치 산업의 한 부분이다. 그러나 조선관련 산업에 있어서 세계 최강국의 위상에 걸맞지 않게 국내에는 BMS & Governor System의 독자 모델이 없는 실정이고, 유럽이나 일본의 제품으로 전량 수입에 의존하고 있는 상황이다. 이에 선박 추진용 저속 디젤 엔진을 위한 제어 시스템의 관련 기술을 연구하여, SEA-CAPS를 개발하였다. 본 연구에서는 BMS & Governor System에 대한 개요와 SEA-CAPS의 개발 내용, 그리고 환경 및 성능 시험에 관한 내용을 언급하고자 한다.

  • PDF

Automation of Governor Performance Test System (조속기 시험 시스템의 자동화)

  • Lee, I.Y.;Kim, J.W.;Kang, M.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.155-161
    • /
    • 2005
  • Governors control the revolution speed of heat engines such as diesel engines, steam turbines and gas turbines. Precise and prompt tests for the control performances of governors are essential both in governors' manufacturing processes and in governors' maintenance processes. In the conventional governor test systems controlled by analog type electronic controllers, the incorporation of heat engine's dynamics to the test system have been considered very difficult to realize. This study suggests a new governor test system controlled by a digital controller using a personal computer. The application of the digital controller to the test system instead of the analog type electronic controller have brought about the following advancements; (1) heat engine's dynamics could be implemented easily in the test system, (2) automatic test data acquisition both in steady state and in transient state enables us to save test time and to enhance the reliability of the tests.

  • PDF

Improvement in Power System Frequency Control by Automatic Follow-up Regulator of Thermal Power Plant (화력발전소 부하조절기 자동추동장치에 의한 계통주파수 개선에 관한 연구)

  • 권욱현;황재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.10-17
    • /
    • 1991
  • An improved control method in turbine control system is proposed. By automatic follow-up design, power system frequency may be maintained within prespecified range. Base or half load control is possible by distributing power plant load allotment. Otherwise, diminutive frequency-load control is dine by governor-free operation in power plant. This paper proposes governor-free operation which is automatically followed by load-limitter setter. The condition which limits governor action may be somewhat improved within boiler condition by this idea. This design has been implemented at Samchunpo thermal power plant. The improved practical results are shown.

  • PDF

Characteristics of Frequency Control by Governor and AGC (AGC와 Governor의 주파수 제어 특성)

  • Choi Seung Ho;Jung Yun Jae;Baeck Wong Ki;Chun Yeong Han
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.60-63
    • /
    • 2004
  • AGC is widely used to regulate the frequency of power systems. It is also used to control the frequency of Korean Power System. Control strategies depends on systems to which it is applied. Korean Power System consists of one control area and it has no tie-line. In this research, we have developed a simulation tool to confirm AGC dynamics. The developed tool has been verified by two-machine three-bus system. Moreover an AGC control strategy has been suggested to avoid contradiction with governor dynamics. Low pass filter with relatively long time constant showed good regulation performance. This simple strategy is expected to be applied to New EMS in KPX to get reasonable AGC regulation performance.

  • PDF

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.

The Modernization of Automatic Control facilities of Hydro Power Plant (수력발전소 자동제어설비의 현대화)

  • Kwon, O-Geuk;Kwon, Young-June;Song, Young-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.69-70
    • /
    • 2008
  • Automatic control systems(AVR, Governor, Synchronizer) installed $1970{\sim}1980$ in K-water were considered to be rehabilitated around 2000. Moreover, Korea Power Exchange market system was changed from PPA (Power Purchase Agreement) to a bidding system. Therefore, depending on the power quality, the power provider could achieve additional profits. It is the excitation system and governor that have the functions of enhancing power necessities. During the 20 to 30 years of generator operation, there were many major and minor problems. Examples are SCR burnout (Andong: Excitation system), hunting (Imha: governor), field circuit breaker failure (Chungju 1st: excitation system), the rise of leakage current (Chungju 2nd: excitation system), power supply burnout (Chungju 2nd: governor). These are the typical examples of malfunction which hindered the generator operation and, consequently, diminished the profit of power business. In order to satisfy the needs of the power market and prevent malfunctions mentioned above, the rehabilitation of AVRs and governors were executed. A new system was made to have the flexibility of ancillary service (GF, AGC, etc.), PSS function. With user friendly HMI software, it is more convenient for the operator to fulfill suitable maintenance. It was possible to connect SCADA system by opening protocol of AVR, governor for the efficiency of operation and maintenance.

  • PDF

Decentralized Load-Frequency Control of Interconnected Power Systems with SMES Units and Governor Dead Band using Multi-Objective Evolutionary Algorithm

  • Ganapathy, S.;Velusami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • This paper deals with the design of decentralized controller for load-frequency control of interconnected power systems with superconducting magnetic energy storage units and Governor Dead Band Nonlinearity using Multi-Objective Evolutionary Algorithm. The superconducting magnetic energy storage unit exhibits favourable damping effects by suppressing the frequency oscillations as well as stabilizing the inter-area oscillations effectively. The proposed control strategy is mainly based on a compromise between Integral Squared Error and Maximum Stability Margin criteria. Analysis on a two-area interconnected thermal power system reveals that the proposed controller improves the dynamic performance of the system and guarantees good closed-loop stability even in the presence of nonlinearities and with parameter changes.

A Study on Turbine Control Algorithms for Large Steam Turbine in a Power Plant (대용량 발전소 재열재생 증기터빈 제어알고리즘에 관한 고찰)

  • Choi, In-Kyu;Jeong, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1665-1666
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Therefore after the steam turbine reaches its rated speed and the generator gets into parallel operation with power grid, the electrical power can be increased by turbine controller or governor. The first governor was invented by James Watts for the steam engine to be maintained at a constant speed. The first governor by him was mechanical type with fly balls. The electrical type governor was created due to the progress of electronic devices such as operational amplifiers or integrated circuits. and Today digital electronic type of governor is being widely used in most prime movers.

  • PDF

Development of Intelligent Digital Governor System for Steam Turbine Generator in Buk-Cheju Thermal Power Plant (북제주 화력 발전소 스팀 터빈 발전기용 인텔리전트 디지털 조속기 개발)

  • 전일영;하달규;신명철;김윤식
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.608-613
    • /
    • 1999
  • This thesis aims at developing of a digita governor system for the steam turbine generator on the Buk-Cheju Thermal Power Plant of KEPCO. The steam turbine generator of the Buk-Cheju Thermal Power Plant is modelled. As a hardware platform, a triple modular system which is fitted 32-bit microprocessor of Motorola company to perform the digital governor system is used. The parameters of the PID controller algorithm in the speed control block is tuned on the basis of the estimated model.

  • PDF

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.