• 제목/요약/키워드: Governing equation FEM

검색결과 59건 처리시간 0.025초

타원형 저어널 베어링의 동특성 해석에 관한 연구 (A Study on Dynamics Characteristic Analysis of Elliptical Journal Bearing)

  • 박성환;오택열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.20-27
    • /
    • 2002
  • An analysis model for an elliptical fluid film bearing is described. The principles of hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field equation as related to elliptical journal bearing. Finite element method approximations are given for the pressure field equation and a temperature model, both related to the fluid film thickness. The thermal effects in the lubricant viscosity, lubricant film thickness, variation of the journal rotating speed and influence of turbulence are investigated in this paper A finite element model and an iterative computational process are described, whereby full simultaneously converged field solutions for fluid film thickness, temperature, viscosity, pressure, stiffness and damping coefficient are obtained.

유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석 (Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis)

  • 정명수;장건희
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.

유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석 (Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method)

  • 조진래;이홍우;하세윤;박태학;이우용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.33-42
    • /
    • 2003
  • 본 논문에서는 2차원 사각탱크내 비압축성, 비점성, 비회전 유동에 대한 비선형 슬로실 해석을 다룬다. 유체영역의 지배방정식으로 포텐셜 이론에 기반을 둔 라플라스 방정식을 사용한다. 대변형의 슬로싱 거동을 표현하기 위하여 베르누이 방정식으로부터 유도된 운동 및 동역학적 자유표면 경계조건을 적용한다. 이러한 비선형 슬로싱 문제는 9결점 요소를 사용한 유한요소법에 의하여 해석되어 진다. 경계조건에 대한 시간적분과 정확한 속도계산을 위하여 각각 예측자-수정자 기법 및 최소자승법을 도입하였다. 또한, 자유표면 추적에서 야기되는 안정성 문제는 시간변동에 대한 자유표면 위치를 직접 계산함으로써 확보할 수 있었다. 외부 조화가진에 대한 본 논문의 결과는 선형이론해 또는 참고문헌의 결과와 비교하여 매우 정확하고 안정적이었다. 프로그램 검증 후, 유체높이와 가진크기에 대한 슬로싱 응답특성을 분석하였다.

1차 미분 근사를 이용한 MLS차분법의 동적해석 (Dynamic Analysis of MLS Difference Method using First Order Differential Approximation)

  • 김경환;윤영철;이상호
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.331-337
    • /
    • 2018
  • 본 논문은 MLS(moving least squares) 차분법의 1차 미분 근사함수를 바탕으로 시간에 따른 수치해석이 가능한 해석기법을 제시한다. 오직 1차 미분 근사함수로만 지배방정식을 이산화했으며, 근사함수를 조립하는 형태로 전체 시스템 방정식을 구성하여 차분법으로 이산화된 운동방정식이 유한요소법(finite element method)과 유사한 모습을 갖게 되었다. 운동방정식을 시간적분하기 위해서 중앙차분법(central difference method)을 사용하였다. 유한요소 알고리즘을 통해서 MLS 차분법과 유한요소법의 고유진동 해석을 수행하였으며, 두 해석결과를 비교하였다. 또한, 동적해석 결과를 기존의 2차 미분 근사함수를 활용한 해석결과와 함께 도시함으로써 제안된 수치기법의 정확성을 검증하였다. 1차 미분 근사함수를 조립하는 과정에서 해석결과의 떨림현상이 억제되었으며 상대적으로 균일한 응력분포를 구할 수 있었다.

진동특성을 이용한 외팔보의 크랙 및 손상 검출에 대한 연구 (Study on Detection of Crack and Damage for Cantilever Beams Using Vibration Characteristics)

  • 손인수;안성진;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.935-942
    • /
    • 2009
  • In this paper, the purpose is to investigate the natural frequency of a cracked Timoshenko cantilever beams by FEM(finite element method) and experiment. In addition, a method for detection of crack in a cantilever beams is presented based on natural frequency measurements. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The detection method of a crack location in a beam based on the frequency measurements is extended here to Timoshenko beams, taking the effects of both the shear deformation and the rotational inertia into account. The differences between the actual and predicted crack positions and sizes are less than 6 % and 23 % respectively.

비부합 절점으로 이루어진 구조물의 합성과 재해석 (On a Substructure Synthesis Having Non-Matching Nodes)

  • 정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.155-160
    • /
    • 2001
  • Actual engineering structure is frequently very complex, and parts of structure are designed independently by different engineers. Also each structure contains so many degree of freedom. For these reason, methods have been developed which permits the structure to be divided into components or substructures, with analysis being done on a small substructure in order to obtain a full structural system. In such case, because of different mesh size among finite element model (FEM) or different matching points among FEM models and experimentally obtained models, their interfacing points may be non-matching. Solving this non-matching problem is useful to other application such as structural dynamic modification or model updating. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint, and interface displacement is approximated by polynomial presentation. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalue of whole structure are calculated using the determinant search method. The number of degree of freedom in the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Some numerical simulation is performed to show usefulness of synthesis method.

  • PDF

Dynamic Stability of a Cantilevered Timoshenko Beam on Partial Elastic Foundations Subjected to a Follower Force

  • Ryu, Bong-Jo;Shin, Kwang-Bok;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1355-1360
    • /
    • 2006
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented.

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

초고주파전류가 흐르는 코일의 표피효과와 전류분포특성 - 핀치효과 개선용 4각단면 중공코일의 전류흐름특성 - (The skin effect and current distribution characteristics of a coil streaming with high frequency)

  • 장석명;서진호;이현구;홍정표;이진형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.222-224
    • /
    • 1996
  • This paper treats the stream phenomena of high frequency current on the solid-loop coil of which consists the hollow conductor. The governing equation is derived from electromagnetic field theory and the characteristics are analyzed by FEM with 2-D and 3-D. The results may be available data on designing the optimum shape of the coil for the improved pinch effect.

  • PDF

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.