• Title/Summary/Keyword: Governing

Search Result 4,670, Processing Time 0.029 seconds

Numerical algorithm with the concept of defect correction for incompressible fluid flow analysis (오차수정법을 도입한 비압축성 유체유동 해석을 위한 수치적 방법)

  • Gwon, O-Bung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.341-349
    • /
    • 1997
  • The characteristics of defect correction method are discussed in a sample heat conduction problem showing the numerical solution of the error correction equation can predict the error of the numerical solution of the original governing equation. A way of using defect correction method combined with the existing algorithm for the incompressible fluid flow, is proposed and subsequently tested for the driven square cavity problem. The error correction equations for the continuity equation and the momentum equations are considered to estimate the errors of the numerical solutions of the original governing equations. With this new approach, better velocity and pressure fields can be obtained by correcting the original numerical solutions using the estimated errors. These calculated errors also can be used to estimate the orders of magnitude of the errors of the original numerical solutions.

Analysis of Torsional Natural Viibration Characteristics of Rotors (회전체의 비틀림 고유진동 해석)

  • 전오성;김정태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1351-1362
    • /
    • 1995
  • A method to estimate the torsional critical speed for practical rotors has been developed in this study. First, the rotor with a uniform shaft segment is modeled for undamped torsional motion analysis, while satisfying all the boundary conditions. This eventually generates governing equations for the torsional critical speeds of the system. The set of governing equations has the form of a sparse and banded matrix. The elements of banded matrix can be arranged in partitions, which correspond to the specific boundary of the rotor. This permits an automatic generation of the system matrix using a computer. In order to calculate the determinant generated by the simultaneous equations, which leads to the torsional critical speed, a recurring numerical algorithm for a (3*4) sub-matrix has been used. This numerical algorithm practically examines successive (3*4) sub-matrix, one at a time, instead of treating a huge matrix. The output of the program provides the mode shapes with continuous curves. The method has been implemented to three rotors given as examples : a simple rotor, Prohl's rotor, and Macmillan rotor.

Stability Analysis of Composite Material Pipes Conveying Fluid (유체유동에 의한 복합재료 파이프의 안정성 해석)

  • 최재운;송오섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.314-321
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is Investigated. The theory of than walled beams is applied and transverse shear. rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transformed to an eigenvlaue problem which provides the Information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Variation of critical velocity of fluid with fiber angles and mass patios of fluid to pipe Including fluid is investigated.

  • PDF

Analysis of Water Surface Oscillation in the Surge Tank Due to the Variation of Water Level (수위변화에 따른 조압수조 내 수면진동에 대한 분석)

  • Jun, Kye-Won;Lee, Ho-Jin;Park, Jae-Sung;An, Sang-Do;Yoon, Young-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.441-444
    • /
    • 2007
  • Surge tank generally are used near the downstream end of tunnels of penstocks to reduce change in pressure caused by waterhammer resulting from load changes on the turbines. In this paper, the surge tank with chamber is selected to analyze water surface oscillation. the governing equation are derived using the law of conservation of mass and momentum. the water surface oscillation in the surge tank are computed using governing equation. In the case of upsurging, water surface oscillation is damped gradually and in the case of downsurging, it is damped rapidly.

  • PDF

Numerical Analysis of Arc-Heated Flow through a solution of Electric Field (전기장 해석을 통한 아크/열 유동 해석)

  • Kim Chin-Su;Oh Se-Jong;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF

End-point position control of a flexible arm by PID self-tuning fuzzy controller

  • Yang, G.T.;Ahn, S.D.;Lee, S.C.;Chonan, S.;Inooka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.496-500
    • /
    • 1993
  • This paper presents an end-point position control of 1-link flexible robot arm by the PID self-tuning fuzzy algorithm. The governing equation is derived by the extended Hamilton's principle and based on the Bernoullie-Euler beam theory. The governing equation is solved by applying the Laplace transform and the numerical inversion method. The arm is mounted on the translational mechanism driven by a ballscrew whose rotation is controlled by dcservomotor. Tip position is controlled by the PID self-tuning fuzzy algorithm so that it follows a desired position. This paper shows the experimental and theoretical results of tip dispalcement, and also shows the good effects reducing the residual vibration of the end-point.

  • PDF

Hydrodynamic forces of impeller shroud and wear-ring seal on centrifugal pump (고성능 원심펌프에서 임펠러 시라우드 및 마모 시일의 유체가진력 해석)

  • Ha, Tae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.102-110
    • /
    • 1998
  • The analysis of lateral hydrodynamic forces in the leakage path between a shrouded pump impeller through wear-ring seal and its housing is presented. Governing equations are derived based on Bulk-flow and Hirs' turbulent lubrication model. By using a perturbation analysis and a numerical integration method, governing equations are solved to yield leakage and rotordynamic coefficients of force developed by the impeller shroud and wear-ring seal. The variation of rotordynamic coefficients of pump impeller shroud and wear-ring seal is analyzed as parameters of rotor speed, pressure difference, shroud clearance, wear-ring seal clearance, and circumferential velocity at the entrance of impeller shroud for a typical multi-stage centrifugal pump.

Analysis of Three-dimensional Cavity flow by using Unstructred grid (비정규 격자를 이용한 3차원 Cavity 유동 해석)

  • Kang, Hyo-Kil;Kim, Moon-Chan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.192-197
    • /
    • 2003
  • Three-dimensional cavity flow is analyzed with the code by using unstructured grid. Incompressible Navier-Stokes equations are used as governing equations, and governing equations are discretized by Finite Volume Method. Artificial compressibility method, proposed by Chorin, and developed by Soh, is used for coupling a pressure and a velocity. Cell-centered scheme is adopted in the code, this has the effect of having denser grid than nodal scheme when the same grid is used. Weighted Averaging scheme is used for the value at a nodal point. Cavity flow is analyzed, and this computed results are compared with the results in the research report

  • PDF

Study on Optimization of Aerodynamic Design of A Jet Fan (제트송풍기의 공력설계 최적화에 관한 연구)

  • Seo, Seoung-Jin;Kim, Kwang-Yong;Chang, Dong-Wook
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Multi-Land (이종 표면을 갖는 실의 특성해석)

  • Ha, Tae Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.447-452
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that leakage is increasing and rotordynamic stability is decreasing as increasing the length of smooth land part in the honeycomb/smooth land seal.

  • PDF