• Title/Summary/Keyword: Gordonia

Search Result 18, Processing Time 0.023 seconds

Biodegradation Characteristics of Dimethyl sulfide [DMS] by Isolated Gordonia sihwaniensis PKL-1 (Dimethyl Sulfide [DMS] 분해균주인 Gordonia sihwaniensis PKL-1의 생물학적 분해특성)

  • 정인경;이일현;박창호
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.143-147
    • /
    • 2004
  • Biodegradation of dimethyl sulfide (DMS) was studied in a batch culture using Gordonia sihwaniensis PKL-1 isolated from a compost biofilter after 100 days of operation for the removal of volatile organic compounds. Optimal pH and temperature for the removal of DMS were 7 and $25^{\circ}C$, respectively. The Michaelis-Menten kinetic constants for DMS removal, $\upsilon_{max}$ and $K_s$, were 0.0016 mg/(mg-protein)ㆍhr, and 8.05 mg/L, respectively.

Complete genome sequence of Gordonia sp. MMS17-SY073, a soil actinobacterium (토양 방선균인 Gordonia sp. MMS17-SY073 균주의 유전체 분석)

  • Kim, Yeong Seok;Kim, Seung Bum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.303-305
    • /
    • 2019
  • An actinobacterial strain designated Gordonia sp. MMS17-SY073 (=KCTC 49257) was isolated from a coastal soil of an island, and its complete genome was analyzed. A single contig consisting of 5,962,176 bp with the G + C content of 67.4% was obtained, and the annotation resulted in 5,201 protein-coding genes, 6 rRNA genes and 45 tRNA genes. Strain MMS17-SY073 was closest to the type strain of Gordonia soli based on the 16S rRNA gene sequence comparison, sharing 98.5% sequence similarity. A number of biosynthetic gene clusters for secondary metabolites, non-ribosomal peptide synthetase types in particular, could be identified from the genome.

Triterpenoids of Gordonia dassanayakei

  • Herath, H.M.T.B.;Athukoralage, P.S.
    • Natural Product Sciences
    • /
    • v.6 no.2
    • /
    • pp.102-105
    • /
    • 2000
  • Chemical investigation of the hot hexane extract of the stem bark of Gordonia dassanayakei afforded a new oleanane triterpenoid, $11{\alpha},13{\beta}-dihydroxyolean-3,12-dione$ (1) and two other oleanane triterpenoids, $3{\beta}-acetoxy-11{\alpha},13{\beta}-dihydroxyolean-12-one\;(2)\;and\;3{\beta},11{\alpha}-diacetoxy-13{\beta}-hydroxyolean-12-one\;(3)\;and\;a\;hopane\;6{\alpha},22-diol$ (4), which are new to the plant.

  • PDF

Isolation and Characterization of a Diesel-Degrading Bacterium, Gordonia sp. SD8 (디젤 분해 세균 Gordonia sp. SD8 분리 및 특성)

  • Hong, Sun-Hwa;Kim, Ji-Young;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.335-339
    • /
    • 2010
  • A diesel-degrading bacterium, Gordonia sp. SD8, was isolated from soil contaminated with petroleum, and its diesel degradation was characterized in a soil as well as a liquid culture system. SD8 could grow in the mineral salt medium supplemented with diesel as a sole carbon and energy source. The maximum specific growth rate ($0.67{\pm}0.05\;d^{-1}$) and diesel degradation rate ($1,727{\pm}145$ mg-TPH $L^{-1}\;d^{-1}$) of SD8 showed at 20,000 mg-TPH $L^{-1}$ and $30^{\circ}C$, and then this bacterium could degrade high strength of diesel of 40,000 mg-TPH $L^{-1}$. The residual diesel concentration in the inoculated soil with SD8 was 3,724 mg-TPH kg-dry $soil^{-1}$ after 17 days, whereas the diesel concentration in the non-inoculated soil was $8,150{\pm}755$ mg-TPH kg-dry $soil^{-1}$. These results indicate that Gordonia sp. SD8 can serve as a promising microbial resource for the bioremediaion of contaminated soil with petroleum hydrocarbons including diesel.

Characterization of PAH (Polycyclic Aromatic Hydrocarbon)-Degrading Bacteria Isolated from Commercial Gasoline (상용 휘발유로부터 분리한 다환 방향족 탄화수소(PAH) 분해 세균의 특성)

  • Kwon, Tae-Hyung;Woo, Jung-Hee;Park, Nyun-Ho;Kim, Jong-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • BACKGROUND: Recent studies have described the importance of bacteria that can degrade polycyclic aromatic hydrocarbons (PAHs). Here we screened bacterial isolates from commercial gasoline for PAH degraders and characterized their ability to degrade PAHs, lipids and proteins as well as their enantioselective epoxide hydrolase activity, salt tolerance, and seawater survival. METHODS AND RESULTS: One hundred two bacteria isolates from commercial gasoline were screened for PAH degraders by adding selected PAHs on to the surface of agar plates by the sublimation method. A clear zone was found only around the colonies of PAH degraders, which accounted for 13 isolates. These were identified as belonging to Bacillus sp., Brevibacterium sp., Micrococcus sp., Corynebacterium sp., Arthrobacter sp., and Gordonia sp. based on 16S rRNA sequences. Six isolates belonging to Corynebacterium sp., 3 of Micrococcus sp., Arthrobacter sp. S49, and Gordonia sp. H37 were lipid degraders. Arthrobacter sp. S49 was the only isolate showing high proteolytic activity. Among the PAH-degrading bacteria, Arthrobacter sp. S49, Brevibacterium sp. S47, Corynebacterium sp. SK20, and Gordonia sp. H37 showed enantioselective epoxide hydrolase activity with biocatalytic resolution of racemic styrene oxide. Among these, highest enantioselective hydrolysis activity was seen in Gordonia sp. H37. An intrinsic resistance to kanamycin was observed in most of the isolates and Corynebacterium sp. SK20 showed resistance to additional antibiotics such as tetracycline, ampicillin, and penicillin. CONCLUSION: Of the 13 PAH-degraders isolated from commercial gasoline, Arthrobacter sp. S49 showed the highest lipid and protein degrading activity along with high active epoxide hydrolase activity, which was the highest in Gordonia sp. H37. Our results suggest that bacteria from commercial gasoline may have the potential to degrade PAHs, lipids, and proteins, and may possess enantioselective epoxide hydrolase activity, high salt tolerance, and growth potential in seawater.

Oleanane Triterpenoids from Gordonia ceylanica

  • Herath, H.M.T.B.;Athukoralage, P.S.
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.253-256
    • /
    • 1998
  • Chemical investigation of hot hexane extract of the stem bark of Gordonia ceylanica afforded a new triterpenoid, $3{\beta}-acetoxy-28-hydroxyolean-12-ene$ (1) and three other oleanane triterpenoids, $3{\beta}-hydroxyolean-12-ene$ (2), $3{\beta}-acetoxyolean-12-ene$ (3), and $3{\beta}-acetoxyolean-12-en-11-one$ (4) which are new to the species. Structure of compound 1 was suggested by $^1H\;NMR,\;^{13}C\;NMR$ and MS spectral data and confirmed by converting to previously reported compound, erythrodiol diacetate (5). Structures of 2, 3 and 4 were established by comparison of the spectral data with the previously reported compounds. Further the acid hydrolysate of 4 was identical with $3{\beta}-hydroxyolean-12-en-11-one$ (6).

  • PDF

Bioinformatics based Identification and Characterization of Epoxide Hydrolase of Gordonia westfalica for the Production of Chiral Epoxides (Bioinformatics를 활용한 토양미생물인 Gordonia westfalica Epoxide Hydrolase 생촉매 개발 및 Chiral Epoxides 제조 특성 분석)

  • Lee Soo Jung;Lee Eun Jung;Kim Hee Sook;Lee Eun Yeol
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.311-316
    • /
    • 2005
  • Epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis from racemic epoxides. Various microorganisms were identified to possess a EH activity by multiple sequence alignment and analysis of conserved domain sequence from genomic and megaplasmid sequence data. We successfully isolated Gordonia westfalica possessing EH activity from various microbial strains from culture type collections. G. westfalica exhibited (R)-styrene oxide preferred enantioselective hydrolysis activity. Chiral (S)-styrene oxide with high optical purity $(>\;99\%)\;ee)$ and yield of $36.5\%$ was obtained from its racemate using whole-cell of G. westfalica.

Metabolic Roles of Carotenoid Produced by Non-Photosynthetic Bacterium Gordonia alkanivorans SKF120101

  • Jeon, Bo Young;Kim, Bo Young;Jung, Il Lae;Park, Doo Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1471-1477
    • /
    • 2012
  • Carotenoids produced by non-photosynthetic bacteria protect organisms against lethal photodynamic reactions and scavenge oxygenic radicals. However, the carotenoid produced by Gordonia alkanivorans SKF120101 is coupled to reducing power generation. SKF120101 selectively produces carotenoid under light conditions. The growth yield of SKF120101 cultivated under light conditions was higher than that under dark condition. In the cyclic voltammetry, both upper and lower voltammograms for neutral red (NR) immobilized in intact cells of SKF120101 were not shifted in the condition without external redox sources but were commonly shifted downward by glucose addition and light. Electric current generation in a biofuel cell system (BFCS) catalyzed by harvested cells of SKF120101 was higher under light than dark condition. The ratio of electricity generation to glucose consumption by SKF120101 cultivated in BFCS was higher under light than dark condition. The carotenoid produced by SKF120101 catalyzes production of reducing power from light energy, first evaluated by the electrochemical technique used in this research.

Desulfurization of Dibenzothiophene and Diesel Oil by Metabolically Engineered Escherichia coli

  • Park, Si-Jae;Lee, In-Su;Chang, Yong-Keun;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.578-583
    • /
    • 2003
  • The desulfurization genes (dszABC) were cloned from Gordonia nitida. Nucleotide sequences similarity between the dszABC genes of G. nitida and those of Rhodococcus rhodochrous IGTS8 was 89%. The similarities of deduced amino acids between the two were 86% for DszA, 86% for DszB, and 90% for DszC. The G. nitida dszABC genes were expressed in several different Escherichia coli strains under an inducible trc promoter. Cultivation of these metabolically engineered E. coli strains in the presence of 0.2 mM dibenzothiophene (DBT) allowed the conversion of DBT to 2-hydroxybiphenyl (2-HBP), which is the final metabolite of the sulfur-specific desulfurization pathway. The maximum conversion of DBT to 2-HBP was 16% in 60 h. Recombinant E. coli was applied for the deep desulfurization of diesel oil supplemented into the medium at 5% (v/v). Sulfur content in diesel oil was decreased from 250 mg sulfur/1 to 212.5 mg sulfur/1, resulting in the removal of 15% of sulfur in diesel oil in 60 h.