• Title/Summary/Keyword: Google cloud data analysis

Search Result 29, Processing Time 0.029 seconds

Cloud Security Technology and Vulnerability Assessment (클라우드 보안 기술과 취약점 분석)

  • Kim, A-Yong;Lee, Sung-Ock;Ryu, Seung-Han;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.690-692
    • /
    • 2013
  • Cloud computing is an Internet-based technology, one of the Big Data era aspiring technology. Bring on the internet whenever you need to use multiple physical servers into one virtual server, cloud Cloud technology and large companies, such as leading U.S. IT company, Amazon, IBM, Google, Microsoft and the domestic firm Samsung, SK, KT, NHN the cloud market at home and abroad, and commercialization by investing in the future to continue to grow. The main reason for the introduction of the cloud and reduced operating costs, and to see the most problems is the leakage of personal information. In this paper, we propose a method to improve the security and vulnerability analysis of security technologies and cloud.

  • PDF

A Study on the remote acuisition of HejHome Air Cloud artifacts (스마트 홈 헤이 홈 Air의 클라우드 아티팩트 원격 수집 방안 연구)

  • Kim, Ju-eun;Seo, Seung-hee;Cha, Hae-seong;Kim, Yeok;Lee, Chang-hoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.69-78
    • /
    • 2022
  • As the use of Internet of Things (IoT) devices has expanded, digital forensics coverage of the National Police Agency has expanded to smart home areas. Accordingly, most of the existing studies conducted to acquire smart home platform data were mainly conducted to analyze local data of mobile devices and analyze network perspectives. However, meaningful data for evidence analysis is mainly stored on cloud storage on smart home platforms. Therefore, in this paper, we study how to acquire stored in the cloud in a Hey Home Air environment by extracting accessToken of user accounts through a cookie database of browsers such as Microsoft Edge, Google Chrome, Mozilia Firefox, and Opera, which are recorded on a PC when users use the Hey Home app-based "Hey Home Square" service. In this paper, the it was configured with smart temperature and humidity sensors, smart door sensors, and smart motion sensors, and artifacts such as temperature and humidity data by date and place, device list used, and motion detection records were collected. Information such as temperature and humidity at the time of the incident can be seen from the results of the artifact analysis and can be used in the forensic investigation process. In addition, the cloud data acquisition method using OpenAPI proposed in this paper excludes the possibility of modulation during the data collection process and uses the API method, so it follows the principle of integrity and reproducibility, which are the principles of digital forensics.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Keyword Analysis of Data Technology Using Big Data Technique (빅데이터 기법을 활용한 Data Technology의 키워드 분석)

  • Park, Sung-Uk
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.2
    • /
    • pp.265-281
    • /
    • 2019
  • With the advent of the Internet-based economy, the dramatic changes in consumption patterns have been witnessed during the last decades. The seminal change has led by Data Technology, the integrated platform of mobile, online, offline and artificial intelligence, which remained unchallenged. In this paper, I use data analysis tool (TexTom) in order to articulate the definitfite notion of data technology from Internet sources. The data source is collected for last three years (November 2015 ~ November 2018) from Google and Naver. And I have derived several key keywords related to 'Data Technology'. As a result, it was found that the key keyword technologies of Big Data, O2O (Offline-to-Online), AI, IoT (Internet of things), and cloud computing are related to Data Technology. The results of this study can be used as useful information that can be referred to when the Data Technology age comes.

A Visitor Study of The Exhibition of Using Big Data Analysis which reflects viewing experiences

  • Kang, Ji-Su;Rhee, Bo-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • This study aims to analyze the images of Instagram posts and to draw implcations regarding the exhibition of . This study collects and crawl 24,295 images from Instagram posts as a dataset. We use the Google Cloud Vision API for labeling the images and a total of 212,567 clusters of labels are finally classified into 9 categories using Word2Vec. The categories of museum spaces, photo zone, architecture category are dominant along with people category. In conclusion, visitors curate their experiences and memories of physical places and spaces while they are experiencing with the exhibition. This result reproves the results of previous studies which emphasize a sense of social presence and place making. The convergent approach of art management and art technology used in this study help museum professionals have an insight on big data based visitor research on a practical level.

Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis (개인의 감성 분석 기반 향 추천 미러 설계)

  • Hyeonji Kim;Yoosoo Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • The paper proposes a smart mirror system that recommends fragrances based on user emotion analysis. This paper combines natural language processing techniques such as embedding techniques (CounterVectorizer and TF-IDF) and machine learning classification models (DecisionTree, SVM, RandomForest, SGD Classifier) to build a model and compares the results. After the comparison, the paper constructs a personal emotion-based fragrance recommendation mirror model based on the SVM and word embedding pipeline-based emotion classifier model with the highest performance. The proposed system implements a personalized fragrance recommendation mirror based on emotion analysis, providing web services using the Flask web framework. This paper uses the Google Speech Cloud API to recognize users' voices and use speech-to-text (STT) to convert voice-transcribed text data. The proposed system provides users with information about weather, humidity, location, quotes, time, and schedule management.

Sentiment Analysis From Images - Comparative Study of SAI-G and SAI-C Models' Performances Using AutoML Vision Service from Google Cloud and Clarifai Platform

  • Marcu, Daniela;Danubianu, Mirela
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.179-184
    • /
    • 2021
  • In our study we performed a sentiments analysis from the images. For this purpose, we used 153 images that contain: people, animals, buildings, landscapes, cakes and objects that we divided into two categories: images that suggesting a positive or a negative emotion. In order to classify the images using the two categories, we created two models. The SAI-G model was created with Google's AutoML Vision service. The SAI-C model was created on the Clarifai platform. The data were labeled in a preprocessing stage, and for the SAI-C model we created the concepts POSITIVE (POZITIV) AND NEGATIVE (NEGATIV). In order to evaluate the performances of the two models, we used a series of evaluation metrics such as: Precision, Recall, ROC (Receiver Operating Characteristic) curve, Precision-Recall curve, Confusion Matrix, Accuracy Score and Average precision. Precision and Recall for the SAI-G model is 0.875, at a confidence threshold of 0.5, while for the SAI-C model we obtained much lower scores, respectively Precision = 0.727 and Recall = 0.571 for the same confidence threshold. The results indicate a lower classification performance of the SAI-C model compared to the SAI-G model. The exception is the value of Precision for the POSITIVE concept, which is 1,000.

The Study on Forensic Techniques of Chromebook (크롬북 포렌식 기법에 관한 연구)

  • Yoon, Yeo-Kyung;Lee, Sang-Jin
    • Journal of Digital Forensics
    • /
    • v.12 no.3
    • /
    • pp.55-70
    • /
    • 2018
  • With the diversification of mobile devices, the development of web technologies, and the popularization of the cloud, an internet-centric web OS that is not dependent on devices has become necessary. Chromebooks are mobile devices in the form of convertible laptops featuring a web OS developed by Google. These Web OS mobile devices have advantages of multi-user characteristics of the same device and storage and sharing of data through internet and cloud, but it is easy to collect and analyze evidence from the forensic point of view because of excellent security and easy destruction of evidence not. In this paper, we propose an evidence collection procedure and an analysis method considering the cloud environment by dividing the Chromebook, which is a web OS mobile device popularized in the future, into user and administrator modes.

An Analysis of Changes in Perception of Metaverse through Big Data - Comparing Before and After COVID-19 - (빅데이터 분석을 통한 메타버스에 대한 인식 변화 분석 - 코로나19 발생 전후 비교를 중심으로 -)

  • Kang, Yu Rim;Kim, Mun Young
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.593-604
    • /
    • 2022
  • The purpose of this study is to analyze the flow of change in perception of metaverse before and after COVID-19 through big data analysis. This research method used Textom to collect all data, including metaverse for two years before COVID-19 (2018.1.1~2019.11.30) and after COVID-19 outbreak (2020.1.11~2021.12.31), and the collection channels were selected by Naver and Google. The collected data were text mining, and word frequency, TF-IDF, word cloud, network analysis, and emotional analysis were conducted. As a result of the analysis, first, hotels, weddings, and glades were commonly extracted as social issues related to metaverse before and after COVID-19, and keywords such as robots and launches were derived, so the frequency of keywords related to hotels and weddings was high. Second, the association of the pre-COVID-19 metaverse keywords was platform-oriented, content-oriented, economic-oriented, and online promotion-oriented, and post-COVID-19 clusters were event-oriented, ontact sales-oriented, stock-oriented, and new businesses. Third, positive keywords such as likes, interest, and joy before COVID-19 were high, and positive keywords such as likes, joy, and interest after COVID-19. In conclusion, through this study, it was found that metaverse has firmly established itself as a new platform business model that can be used in various fields such as tourism, travel, festivals, and education using smart technology and metaverse.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.